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ABSTRACT 

 

Perovskite solar cells has been the fastest growing solar cell material till date with verified 

efficiencies of over 22%. Most groups in the world focuses their research on solution based 

devices that has residual solvent in the material bulk. This work focuses extensively on the 

fabrication and properties of vapor based perovskite devices that is devoid of solvents. 

The initial part of my work focuses on the detailed fabrication of high efficiency 

consistent sequential vapor NIP devices made using P3HT as P-type Type II heterojunction. 

The sequential vapor devices experiences device anomalies like voltage evolution and IV 

hysteresis owing to charge trapping in 𝑇𝑖𝑂2. Hence, sequential PIN devices were fabricated 

using doped Type-II heterojunctions that had no device anomalies. 

The sequential PIN devices has processing restriction, as organic Type-II 

heterojunction materials cannot withstand high processing temperature, hence limiting device 

efficiency. Thereby bringing the need of co-evaporation for fabricating high efficiency 

consistent PIN devices, the approach has no-restriction on substrates and offers stoichiometric 

control. A comprehensive description of the fabrication, Co-evaporator setup and how to build 

it is described. The results of Co-evaporated devices clearly show that grain size, stoichiometry 

and doped transport layers are all critical for eliminating device anomalies and in fabricating 

high efficiency devices.  

Finally, Formamidinium based perovskite were fabricated using sequential approach. 

A thermal degradation study was conducted on Methyl Ammonium Vs. Formamidinium based 

perovskite films, Formamidinium based perovskites were found to be more stable. Lastly, 

inorganic films such as CdS and 𝑁𝑖𝑂𝑥 were developed in this work.
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CHAPTER I 

 NEED FOR ENERGY AND PHOTOVOLTAICS 

 

1.1. Energy 

Energy is essential for a functioning society and its resources are critical for human 

survival. The scale of energy use is correlated with the class of life, capabilities of a land and 

development of nations into technological advanced society. Differences in opulence, well-being 

and political supremacy are thus evident between nations based on its energy usage. United States 

of America and China together consume about 42% of the world’s energy in 2015. However, 

United States of America which accounts for only 4% of the World population consumes about 

18% of the world’s energy production. Fig 1.1 shows annual growth in energy consumption. 

Fig 1.1: World energy consumption by year[1] 

Developing and developed nations alike would continue to consume and demand for more 

energy, it’s unfair and impossible to curb the energy needs of growing nations. Hence there arises 
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a need for producing energy without damaging environment and causing social instability. The 

solution to the dilemma is producing sustainable energy resources.  

1.1.1. Sustainable energy  

   Energy consumption and creation is entwined with use of valuable natural resources like 

minerals, forests, water, food and land. Furthermore, energy use can hurt earth’s environment and 

human well-being over extensive length and time scale. Developing nations like India and China 

are drastically increasing their energy consumption for growing their economic and non-renewable 

energy sources are available to them at affordable prices causing a concern as there would an 

increase in the emission of fossil derived 𝐶𝑂2 and 𝐶𝐻4 into the atmosphere. 

Sustainability responsiveness meets a phalanx of global forces such as prevalent human 

impact, economic health, environmental degradation and geopolitical fairness. Sustainable energy 

is a living harmony between the equitable availability of energy services to all people and the 

preservation of earth for future generation. For energy to be considered Sustainable it needs to 

satisfy two key conditions: replenish (short time) and no carbon footprints. Five energy sources 

meet the requirement for Renewable energy sources they are the follows: Solar, Geothermal, 

Wind, Hydropower and Biomass. Fig 1.2 shows the main renewable energy sources.   

 

Fig 1.2: Renewable Energy Sources [2] 
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There was an argument in regards to nuclear energy being considered renewable as it does not 

produce carbon footprints, however uranium the fuel for nuclear energy cannot be refilled. The 

worlds existing cost effective uranium would last for ~1000 years if the world uses only nuclear 

energy and until an efficient way comes to extract the existing uranium or finding newer sources 

nuclear energy is not renewable. Also, the capita for nuclear plant setup is substantially higher in 

comparison to any renewable energy sources.  

When all the five energy sources are examined, one would realize that they all draw their energy 

from sun except for Geothermal which draws energy from earth’s magma (some of its energy is 

from sun too). In using other renewable energy sources like wind, hydropower and bio-mass we 

are indirectly using solar energy, so why cannot we directly harvest solar energy? The solar power 

that generated on earths land mass is about 120000 TW-yr per year while earths energy 

consumption is only about 16 TW-yr per year, which comprises of only 0.013% of the solar 

produced energy. If we lay 20% efficient Solar cell panels across Sahara desert (>9,000,000+ 

𝑘𝑚2), we can produce about 630 Tera Watt of energy, which is approx. 46 times the earths energy 

requirement [3] and these are pretty conservative numbers.  

Fig 1.3 shows recoverable finite and renewable energy sources, it can be clearly seen that solar 

energy reserves is greater than all others energy sources put together by orders of magnitude. 

Hence, it’s just common sense to tap a very small portion of the over abundant and predictable 

solar power for meeting the future energy requirements. Obviously, there are challenges that need 

to be systematically overcome for efficiently tapping, storing and utilizing solar power, however 

if done properly the pros will far outweigh the cons.  
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Fig 1.3: Comparing finite and renewable planetary energy reserves (Tera watt years). [4] 

1.1.2. Comparison of sustainable energy sources in USA 

Fig 1.4 shows the renewable energy capacity by source and it is noticeable that the sustainable 

energy production has been steadily increasing over the last decade.     

 

Fig 1.4: U.S. Renewable electricity nameplate capacity by source [5] 
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The increase in renewable energy can be attributed to the growing energy needs, the advancement 

in technology, growing population and global warming concerns. However, when the different 

renewable energy sources are compared, one can perceive that the growth of solar energy has been 

the greatest. Figure 1.5 shows the growth of renewable energy sources by year over the last decade. 

 

Figure 1.5: U.S. Renewable Electricity Annual Growth Percentage [5] 

 

1.2. Growth of Silicon Photovoltaic Industry 

The growth of Solar can be attributed to drop in price of poly-silicon, rise in efficiency of Solar 

panels, advancements in manufacturing technology and increasing competition between 

companies. A close look at the solar output shows that it has been increasing steadily since 2004 

in comparison to other renewable energy, there was a small drop in solar output in 2008 owing to 

the increase in price of poly-Silicon, however polysilicon prices dropped drastically in the 

following years resulting in increase in solar power production. Fig 1.6 shows the price of Silicon 
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solar cells which started off at $76 per watt (1977) down to $0.30 per watt in 2015, with module 

price costing as low as $0.57[6] in 2015. 

 

 

Fig 1.6: Silicon price history [6] 

 

Silicon solar cells dominate 90 percent of the existing global photovoltaic market today [7] yet the 

record efficiency for silicon has increased merely from 25% to 25.6% over the last 15 years. The 

photovoltaic industry is thus looking for other alternatives that can use the existing technology of 

silicon by making Tandem cells on Silicon or even possibly replacing silicon with other 

inexpensive alternatives, however the latter is less likely considering Silicon market share and 

dominance.  

A detailed breakdown of the price of silicon solar cell as mounted by utility system is shown in 

Fig 1.7, projections are made that by 2020 price will drop down to 99 cents/Watt. On reviewing 

the breakdown price of PV system, it’s evident that even in 2020 most of the expense (57 cents) 

would go towards the PV module, hence there is a need to develop inexpensive photovoltaic 

material that is easy to fabricate and mass produce which would eventually reduce the cost of PV 

systems.  
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Fig 1.7: Utility Fixed-Tilt PV Systems Pricing by Cost Category [8] 

 

1.2.1. Thin film photovoltaic 

An alternative to silicon solar cells is Thin film photovoltaic which uses material like Amorphous 

Silicon, Organic Photovoltaic, Cadmium Telluride (CdTe) & Copper Indium Gallium Arsenide 

and depending on the thin film module preferred the efficiency can range from 7%-22.1%. 

Advantage of thin film solar panels over C-Si are follows: mass production is simple making them 

potentially cheaper to manufacture, can be made flexible which opens a wide range of applications, 

higher bandgap material can perform better at places which has warmer temperature and if space 

is not an issue thin film solar cell might be more logical. First Solar concentrates more on the utility 

sector than on roof-top installation which is dominated by C-Si modules. They have established 

some of the largest solar farms like the Topaz and Desert sunlight project each having a capacity 

of 550 megawatts [9] 

Driving ahead in the thin film technology race is CdTe PV systems which has theoretical efficiency 

of above 30% [10] and is manufactured by First solar, they announced a record efficiency of 22.1% 

in February 2016 and have a 5.1% worldwide market share [9]. First Solar has suggested that they 
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can match the average efficiency of crystalline silicon and produce modules with efficiency of 

19.5% by 2017 [11]. For the last few decades the Open Circuit Voltage (Voc) in CdTe solar cells 

hasn’t exceeded 0.9V, however in February 2016 significant milestone was hit by making 

processing changes that helped Voc exceed 1V [12]. First Solar the firm believes that 25% 

efficiency is a realistic likelihood and are working towards it [11]. Fig 1.8 shows the efficiency 

evolution of various Thin film photovoltaic technologies.  

 

Fig 1.8: Thin film PV efficiency evolution [13] 

 

1.3. Rise of Perovskite 

Towards the beginning of 2013, a new breed of PV material called Perovskite caught the attention 

of everyone in the PV community primarily due to the work done by Michael Gratzel [14] and 

Henry Snaith[15], both fabricated devices with 15% efficiency catching the attention of everyone 

working in solar cells. As of today, perovskite solar cells have a verified efficiency of 22.1% [13] 

making them the fastest growing solar cell material till date. Fig 1.8 shows the efficiency of all PV 

technologies and it is evident that Perovskite have the fastest growth till date. 
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Fig 1.9: NREL efficiency chart [13] 
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1.3.1. Perovskite crystal structure 

Any material with the crystal structure of 𝐶𝑎𝑇𝑖𝑂3 commonly known as Perovskite structure [16] 

is identified as Perovskite and is named after Russian mineralogist Lev Perovski [1792-1856] The 

mineral Calcium Titanate was first discovered in the Ural Mountains of Russia by Gustav Rose in 

1839 and oxides with chemical formula 𝐴𝐵𝑂3 adopt this structure. Fig 1.9 shows the crystal 

structure of Perovskite material.  

  

Fig 1.10: Crystal structure Oxide perovskite (right) and PV (right) Perovskite [17, 18] 

The general chemical formula of perovskite is 𝐴𝐵𝑋3, where A and B are cation of different size 

(A is larger than B) and X is the anion bonding to both cations. If the perovskite has ideal cubic 

structure, A has a coordination number of 12 and B has a coordination number of 6. Nevertheless, 

comparative size of ions that is required for stability of a crystal structure are quite severe and 

given by the Goldschmidt Tolerance factor ′𝑡′ [19-21] and octahedral factor ′𝜇′ [20, 21].  

Where, 𝑡 =
(𝑅𝐴+𝑅𝑋)

√2(𝑅𝐵+𝑅𝑋)
 (1)  

and 𝜇 =
𝑅𝐵

𝑅𝑋
 (2) 

𝑅𝐴, 𝑅𝐵 & 𝑅𝑋 are the radii of A cation, B cation and X anion respectively.  
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For halide based perovskite, A cation can be either Methyl Ammonium/ 𝐶𝐻3𝑁𝐻3
+ (MA),  

Formamidinium / 𝑁𝐻2𝐶𝐻 = 𝑁𝐻2
+(FA) [22] or Cesium [23], B cation can be Lead (Pb) or Tin 

(Sn) [24] and C anion can be Iodide (I), Chloride (Cl) [25], Bromide (Br) [26] , Nitrate or 

Thiocyanide [27]. Slight buckling, alteration and degradation of the structure could lead to 

distortion of the high symmetry structure to lower symmetries. When t=0.9 to 1.0, cubic structure 

is expected, however slightly lower or greater ‘t’ can form tetragonal, rhombohedral and 

orthorhombic structures. Based on the tolerance and octahedral factor several possible materials 

can form the perovskite structure. Fig 1.10 shows the material that can possibly be used.  

 

Fig 1.11: Tolerance and Octahedral factor[28] 

Couple of research groups have shown temperature based transition and fabrication dependent 

crystal structure, however a trend is seen i.e. at higher temperature perovskite takes a cubic 

structure [29-32], as temperature decreases perovskite undergoes distortion to form tetragonal [29-

32], rhombohedral and orthorhombic structures [29, 33]. In the case of 𝐴𝑃𝑏𝐼3 perovskite, the A 

cation can range from 2.12 𝐴𝑜 (t=0.9) to 2.6 𝐴𝑜 (t=1.0) for cubic structure. However, since MA 

cation has an ionic radius of 2.7 𝐴𝑜, MAPbI3 perovskite (the most studied halide perovskite) 
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should theoretically form a tetragonal perovskite, but due to distortion, fabrication variation and 

differences in measurement ambience there could be different structures too. 

1.3.2. Perovskite evolution  

The first documented interest in Organic-Inorganic halide perovskite was over a century ago [34], 

however the material’s interest was lit up again following thin film transistor and LED work by 

Mitzi and team[35, 36]. Since LED materials can exhibit good PV properties the transition to solar 

cell was anticipated. Tsutomu Miyasaka’s team first reported PV results for Perovskite on 2006 

[37], they initially made a MAPbBr perovskite with an efficiency of 2.2% and later the replaced 

Bromine with Iodine and reported an efficiency of 3.8% [38]. Next, Park and his team deposited 

Perovskite as 2.5nm diameter nanoparticles on 𝑇𝑖𝑂2( Titanium dioxide) and got an efficiency of 

6.5% in 2011[39]. Fig 1.11 shows pictographically the evolution of Perovskite architecture. 

 

Fig 1.12: Historic evolution of Perovskite[40] 
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Subsequently, Gratzel and Park worked together and used spiro-MeOTAD (2,2’,7,7’-tetrakis(N,N-

di-p-methoxyphenylamine)-9,9’-spirobifluorene) as Hole collecting Type-II heterojunction and 

achieved an efficiency of 10.9% [41, 42]. (Snaith also showed similar results using Spiro) 

Following this, Seok joined Gratzel and they capped the scaffold (mesoporous- Electron collecting 

Type II Heterojunction) with a overlaying layer of perovskite and this increased the efficiency to 

12.3% [43, 44]. Finally, the big jump came when Gratzel via sequential solution deposition [14] 

and Snaith via co-evaporation [15] both independently reported devices with 15% efficiency.  

1.3.3. What makes Perovskite attractive? 

Perovskite is a direct bandgap  material [45, 46] with high absorption co-efficient α~ 105𝑐𝑚−1 

[21] [47-49] making them ideal for thin film application. High absorption and direct bandgap 

implies that the thickness required for absorbing photons is less, hence less raw material. Fig 1.12 

shows the absorption coefficient of perovskite in comparison to other PV materials. 

 

Fig 1.13: Absorption coefficient of Perovskite [21] 

Using equation (3), we can calculate the thickness of film required for absorption most of the 

photons, 
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𝐼𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 = 𝐼0𝑒−𝑎𝑏𝑠 𝑐𝑜𝑒𝑓𝑓 ∗𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (3) 

For absorbing 98% incident photons, a thickness of only ~390nm is necessary. The band structure 

of perovskite is calculated using Density function theory and is shown in Fig 1.13. On observing 

the structure, it can be evident that irrespective of the halide used, the conduction band minima 

and the valence band maxima are at the same crystal momentum (k-vector) in the Brillouin zone, 

therefore it’s a direct bandgap semiconductor. 

 

                    Fig 1.14: Band Structure of Perovskite[46] 

Perovskite has a bandgap of ~1.57 eV[42, 49, 50] and this is not too far away from 1.34 eV (the 

bandgap for maximum possible theoretical efficiency of 33.7% of single p-n junction as per 

Shockley-Queisser limit [51]). The maximum possible theoretical efficiency for perovskite is 

~30% [52]. Fig 1.4 shows the calculated bandgap of Perovskite found using Tauc plot [53, 54] 
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Fig 1.15: Bandgap of Perovskite[50] 

Perovskite has a large dielectric constant 18-70 [50, 55-57] and therefore a small exciton binding 

energy of 2-50 meV [55, 58-62]. Therefore, the charge transport mechanism is non-excitonic and 

there is minimal bi-molecular recombination, hence good charge collection. Perovskite thin films 

have diffusion length in the micrometer range [42, 48, 63-66], while single crystals have diffusion 

length 175um-10mm range [67] [68].  

Long diffusion length suggests good charge collection as carriers do not recombine with each 

other, in addition Perovskite has low defect density [50, 69], so there not much trap assisted 

recombination which further improves the collection of carriers, therefore improving the generated 

current. However, the need for highly doped Type-II heterojunction for electron and hole 

collection brings in debate in regards to the charge transport mechanism of perovskite. 

The conduction band (~3.8 eV) and valence band (~5.4 eV) edges of Perovskite matches with a 

wide range of materials, allowing research groups across the world to work with different materials 

as Type II n-type and p-type heterojunction. Fig 1.15 shows the band edges of Perovskite and some 

of the more commonly used type heterojunctions. Other materials like Molybdenum oxide, 
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Vanadium oxide, Rhenium oxide, Ruthenium oxide and Tungsten oxide can also be used as p-type 

Type II heterojunction [70] for perovskite.  

 

Fig 1.16: Band edge of materials [71] 

The bandgap of perovskite is tunable [72-74] as visible in Fig 1.16, this is specifically 

advantageous for Tandem cell application. Perovskite with bandgap of 1.74 eV was engineered 

and tandem cell will >25% efficiency have already been made[75].   

 

Fig 1.17: Tunable bandgap of Perovskite[72] 
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Fig 1.17 shows that the maximum possible theoretical efficiency for a 2 junction Tandem of 

Perovskite (1.74 eV bandgap) and Si/CIGS (1.1 eV bandgap) is ~ 45%, this very is exciting as 

perovskite can be incorporated into the existing and established Silicon PV technology.  

 

Fig 1.18: Maximum efficiency 2-junction Tandem [13] 

In addition, to the above advantages Perovskite has economical and fabrication/manufacturing 

benefits which make it so easily available and affordable to research groups. The material required 

for making perovskite solar cell such as Lead Iodide, Lead Chloride, Lead Bromide, Methyl 

ammonium Iodide, Formamidine Iodide etc. are relatively inexpensive [76-80] and easily 

accessible. In addition, there are some numerous ways of making the Thin film via both solution 

and vapor approach, which will be discussed more elaborately later in Chapter 3. 

 Nevertheless, Perovskite has its share of disadvantages. It consists of Lead halide (water soluble) 

which is a big environmental hazard[81-83], millions of dollars have been spend over the last 

decade to remove lead[84-86], it’s unlikely the EPA is going to allow its reintroduction. Also, its 

naturally unstable unless encapsulated from moisture[87-90]. However, initial studies by groups 

have shown the material to be Photostable.[91-93] 
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1.4. Outline of Thesis 

The first chapter talks briefly on the need for renewable energy especially Photovoltaic, its steady 

growth and the evolution and advantages of Perovskite Thin film solar cell. Second chapter, goes 

over the underlying Device physics and the characterization essential for making good electrical 

and PV grade thin films. In the third chapter, we will learn details of fabrication and talk 

elaborately on Co-evaporator build-up. We assembled an in-house vacuum deposition chamber for 

~$50K (cost of man hours not included), which it had bought commercially would have cost us 

~$400K [94] and using the chamber we made high quality devices. Fourth chapter analyzes the 

results of sequentially made NIP (MAI based), PIN (MAI based) and NIP (FAI device) and the 

voltage evolution studies. Fifth chapter converses the thermal stability of Perovskite and the 

structural advantages of FAI over MAI based devices. Lastly, sixth chapter discusses the results 

of Co-evaporated PIN (MAI), NIP(MAI) and FAI (PIN) devices. To conclude, the Seventh chapter 

summarizes the work done in this Thesis and suggestions for future work.  
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CHAPTER 2 

 DEVICE PHYSICS AND CHARACTERIZATION 

 

Solar cell transforms the energy from the sun into electrical energy. When light is absorbed by 

matter, the photons lose its energy to excite an electron to a higher energy state within the material, 

and the excited electron relaxes back to ground state dissipating energy as either heat or a photon. 

However, in photovoltaic material there is an internal field which extracts and collects the excited 

electrons. The separation and collection of the excess carriers causes charge build up and a 

resulting potential difference that is used to drive electrons for electromotive work. The solar cell 

is just a simple PN junction with no voltage applied across but one that generates voltage and 

current.  

To be a good photovoltaic material, the material needs to fulfill the following conditions: - 

• The material needs to have an energy gap that separates states that are full with electrons 

from the empty states. 

• The photons incident on material needs to be completely absorbed.  

• Each absorbed photon must generate an electron-hole pair. 

• The electron hole-pair must not recombine. 

• The generated charges should be separated. 

•  Finally, charges need to be transported to an external circuit without any losses. 

 All the above listed criteria’s i.e. absorption, electron-hole pair creation, no recombination, 

charge separation and transportation of charges can be met using a PN junction. Let us consider 

each of these phenomena in further detail. 
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2.1. Generation  

Generation is the process of increasing the number of free carriers available to carry charge. The 

process requires an energy input that could be given in different ways, i.e. via kinetic energy of 

carriers (impact ionization), phonons (vibration energy of lattice) or photons (light). We know that 

at absolute zero, no electrons are present in the conduction band but as temperature increases the 

lattice gains vibrational energy and provides part of the energy to electrons, thereby exciting it to 

conduction band. This process is known as thermal generation. In general, we refer to the excitation 

of electron from valence band to conduction band as generation, nevertheless creation of individual 

charges i.e. only electron or hole is also generation. When carrier is excited from a defect site to 

conduction band, an electron is created and not a hole and this is also generation. Similarly, 

excitation a carrier from valence band to a defect state creates a hole and no electron and is also a 

generation event. 

Photogeneration is the principal generation process for Photovoltaics and makes movable electron 

and hole via absorption of photon. However, there are other optical process that can occur due to 

photons, such as absorption of photons by carriers increasing its kinetic energy (occurs at higher 

carrier concentration) or absorption of photons by crystal lattice to generate phonons. These events 

occur at photon energy <100ev and results in enhancing the thermal generation of carriers. 

2.2. Absorption  

One of the most powerful and easiest methods for studying the band structure of a semiconductor 

material is to measure its absorption spectrum. When semiconductor is illuminated with light, 

photons may be absorbed or pass through the semiconductor as though it is transparent depending 

on photon energy and bandgap of semiconductor. In absorption process, a photon of known energy 

or wavelength excites an electron from lower energy to higher energy state, hence if light from a 
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monochromator is passed through a block of semiconductor and changes in transmission is 

analyzed, one can deduce the possible transition an electron makes and find the distribution of 

states in the material.  

There are several transition an electron can make such as band to band, between subbands, bands 

and impurities, transition of free carrier in a band, exciton, resonance of impurities, vibrations of 

crystal lattice and chemical bonds.  

 

2.2.1. Band to band transition 

Absorption is expressed in terms of its coefficient α(ℎ𝜐), which is defined as the relative rate of 

decrease in light intensity 𝐿(ℎ𝜐) along its propagation path[95]: 

 

α(ℎ𝜐) =
1

𝐿(ℎ𝜐)

𝑑[𝐿(ℎ𝜐)]

𝑑𝑥
 

 

The fundamental absorption refers to the transition of an electron from the valence to the 

conduction band. If the energy of the photon(ℎ𝜐) is less than bandgap energy (𝐸𝑔) it passes 

through the material, however if photon energy is equal to or greater than bandgap energy the 

electron is excited from the valence to the conduction band. For the case when (ℎ𝜐) > 𝐸𝑔, the 

excess energy provides additional kinetic energy to electron and its dissipated thermally via 

collision with the crystal lattice. Fig 2.1 shows the basic absorption process.  



www.manaraa.com

22 

 

 

Fig 2.1 Optical generated electron-hole pair  

 

Absorption coefficient α(ℎ𝜐) for a material is proportional to the probability of transition 

between initial to final state  (𝑃𝑖𝑓), density of initial state (𝑛𝑖) and density of final state (𝑛𝑓) and 

can be written as 

α(ℎ𝜐) ∝ ∑ 𝑃𝑖𝑓 𝑛𝑖𝑛𝑓 

Since the photons momentum, ℎ/𝜆  ( 𝜆 is the wavelength of light, few thousand angstroms), 

is significantly lesser than the crystal momentum (k) ℎ/𝑎 ( 𝑎 is the lattice constant, few angstroms), 

the photon cannot provide electrons with momentum i.e. if incase there is a momentum mismatch. 

If all momentum conserving transitions are permissible, 𝑃𝑖𝑓 is photon energy independent. 

However, in some materials quantum selection rules prohibits direct transition at k=0 [95], in this 

case 𝑃𝑖𝑓 increases with photon energy. 

In indirect bandgap semiconductor, transitions require change in both energy and 

momentum. And as photons cannot give the necessary momentum, the momentum conservation 

is given by phonons (lattice vibration) interaction, in general it’s the acoustic phonons. Fig 2.2 

shows the two-step process.   
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Fig 2.2: Phonon assisted transition [96] 

Though broad spectrums of phonons are available, only the phonons with the necessary 

momentum fluctuations are usable. As temperature decreases, phonon density decreases 

diminishing the probability for 2 step process, resulting in a drop of α(ℎ𝜐). 

2.2.2. Band tail and deep defect transition 

For photon energies, less than bandgap energy (ℎ𝜈 < 𝐸𝑔) one would expect that there is 

no absorption but this is seldom the case. An exponentially increasing absorption edge is seen [97-

99], and it is found that 

𝑑(ln 𝛼)

𝑑(ℎ𝜈)
=

1

𝐾𝑇
 

and is known by Urbach’s rule [100]. The absorption occurs due to subgap transitions namely from 

band tail and deep tracks. Fig 2.3 shows a visual representation of the possible subgap transitions. 
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Fig 2.3: Band tail and Deep trap transition 

These transitions are significantly smaller in comparison to band-band transition as the 

density of tails traps and deep traps are less in comparison to the density of states available in the 

valence and conduction band. However, they provide valuable information of the materials band 

structure especially distribution of the tail states and deep states [101-104]. For example, by 

plotting photon energy vs absorption coefficient[105], one can determine Urbach energy 

(empirical parameter with units of energy that describe the distribution of states).  

 

2.2.3. Exciton absorption 

Excitons are electron-hole pairs that are bound by columbic attractive forces. Exciton moves 

through the crystal and transfers energy but not electronic charge as they are neutral. The exciton 

formation is observed both in direct bandgap semiconductor and indirect bandgap semiconductors. 

In direct bandgap semiconductor, the transitions occurs as pronounced peaks in the absorption 

spectrum at very low temperatures but the peaks broadens out at higher temperatures[98]. In 

indirect semiconductor, exciton absorptions are observed as steps in absorption spectrum[106, 

107] and requires a phonon participation for conservation of momentum. Fig 2.3 shows the exciton 

absorption process. 
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Fig 2.4: Exciton Absorption 

 

2.3. Recombination 

Recombination is a relaxation event of excited mobile charge carriers that results in the 

release of energy. The excess energy can be given off as photons or phonons or even as kinetic 

energy to an existing charge. Generation-Recombination is nature’s way of restoring order i.e. 

excess carrier in a material is eliminated. So, for every generation there is and there will be an 

equivalent recombination process. There are multiple ways that a recombination might occur and 

accordingly electrons or hole or both as a couple could be annihilated. For example, if an electron 

in the conduction bands drops to a hole in valence bond, then both the electron and hole is lost. 

However, if electrons drop from conduction band to trap state only electrons are lost or in the 

contrary electron drops from trap state to valence band, a hole is lost.  

The above specified recombination’s can be distinguished into avoidable and un-avoidable. 

Unavoidable are due to essential physical processes while avoidable are due to traps state or defect 

in the material. The unavoidable recombination is mostly Band-to-Band, while all other 
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recombination’s such as exciton, Auger, Trap assisted, Surface and Grain boundary recombination 

could in theory be avoided. 

2.3.1. Band to band recombination 

Theoretically the simplest of recombination processes is band-to-band recombination, and is also 

referred to as thermal recombination or bimolecular recombination. It’s the direct extinction of 

conduction band electron and valence band hole, the electron drops from an allowed conduction 

band state to an unfilled valence band state with the release of energy that is typically radiative in 

the form of photons, which corresponds to the material bandgap. Fig 2.5 represents band to band 

recombination. 

 

Fig 2.5: Band to band recombination 

The recombination equation can be represented by the following expression:   

𝑅 = 𝐶(𝑛𝑝 − 𝑛𝑖
2) 

Where C is the band to band recombination constant ( 
𝑐𝑚

𝑠𝑒𝑐

3
). n, p and 𝑛𝑖 are the electron, 

hole and intrinsic carrier concentration (𝑐𝑚−3). The above equation can be simplified for small 

signal condition. For n- type semiconductor, 

𝑅 ≅ 𝐶. ∆𝑝. 𝑁𝐷 =
∆𝑝

𝜏𝑝
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𝜏𝑝 =
1

𝐶𝑁𝐷
 

𝜏𝑝  is the minority carrier hole lifetime, 𝑁𝐷 is the donor concentration and ∆𝑝 is the excess 

carrier concentration. Hence, for n-type material, lifetime of minority hole electron is inversely 

proportional to donor concentration. Similarly, for p-type material, lifetime of minority carrier 

electron is inversely proportional to acceptor concentration [108-112]. 

2.3.2. Trap assisted recombination 

We envision semiconductors as ideal crystals with perfect periodic functions, having no 

energy states within the bandgap, however this is seldom the case. In real crystal, defects can arise 

due to unwanted impurities, broken bonds and strain. The lattice strain induces shallow traps while 

broken bonds and unwanted impurities induces deep traps which acts as recombination centers. 

There is subtle difference between trap and recombination center. Fig 2.6 shows a very simple 

portrayal of a shallow trap. 

 

Fig 2.6: Shallow trap recombination 

Localizes states within the bandgap that captures carriers of one type are often referred to 

as shallow traps. The electron is captured by the trap state and sub sequentially via thermal 

excitation the electron can excited back into the conduction band. So, the electron is not lost but 
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captured and released, thus influencing the mobility of free carriers. Note that when electrons fall 

from conduction band to trap state extra energy is released as phonons. 

Now let us consider recombination center also known as deep traps. Fig 2.7 shows a very 

simple pictorial representation of deep trap. The empty trap is occupied by conduction band 

electron and with the extra energy being released as phonons. This is followed by a valence band 

hole combining with the electron in the trap with a phonon release. Since, the trap as annihilated a 

conduction band electron and valence band hole, we refer to these as recombination centers or 

deep traps. One can also visualize the hole combining with electron in the trap state, as just electron 

dropping from trap state to valence band free state. However, what is important to distinguish is 

that the deep trap has emptied itself and available again from annihilation of mobile carriers. The 

recombination via trap levels is referred to as Shockley -Read-Hall (SRH) recombination.  

 

Fig 2.7: Deep trap recombination 

SRH recombination can be represented by the following equation [108], 

𝑅𝑛 = 𝑅𝑝 =
𝐶𝑛𝐶𝑝𝑁𝑡(𝑛𝑝 − 𝑛𝑖

2)

𝐶𝑛(𝑛 + 𝑛′) + 𝐶𝑝(𝑝 + 𝑝′)
≡ 𝑅 

Where 𝐶𝑛 & 𝐶𝑝 are the electron and hole capture cross section, and 𝑁𝑡 is the total 

concentration of trap centers, and 𝑛𝑖 , n & p are intrinsic carrier concentration, conduction band 
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electron concentration and valence band hole concentration, and 𝑛′& 𝑝′ are quantifiable constants 

equal to electron and hole concentration if fermi level is at trap level. 

For n-type semiconductor under small signal condition, the equation simplifies as follows: 

𝑅 ≅ 𝐶𝑝. ∆𝑝. 𝑁𝑡 =
∆𝑝

𝜏𝑝
 

Where  

𝜏𝑝 =
1

𝐶𝑝𝑁𝑇
 

Thus, the minority carrier hole lifetime is inversely proportional to the density of traps. 

Similarly, for a p-type material, minority carrier electron lifetime is inversely proportional to 

density of trap[108].  

2.3.3. Auger recombination 

Auger recombination is a 3-body or 3 carrier process (2 electron+1 hole or 2 hole+1 electron). The 

collision of 2 like carriers (electron-electron or hole-hole), results in one of the carrier gaining 

kinetic energy and the other losing an equivalent energy. The extinct carrier loses energy and 

recombines with the valence band hole or trap state, while the one that gains kinetic energy goes 

to a higher energy state and slowly loses the extra energy via thermalization (i.e. collision with the 

lattice) and drops back to the conduction band. Fig 2.8 shows pictographically the Auger 

recombination process, the steps seen in the picture is a representation of the thermalizing loss 

experienced by the higher energy electron.  
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Fig 2.8: Auger recombination 

The probability of carrier-carrier collision increases with carrier concentration, so the 

possibility of Auger recombination also increases with carrier concentration. Auger recombination 

occurs in the degenerately doped region of the device, such as 𝑛+& 𝑝+regions of the solar cell. 

Auger recombination for highly doped n-type semiconductor can be represented by the following 

equation [110, 111], 

𝑅 = 𝐶(𝑛2𝑝 − 𝑛. 𝑛𝑖
2) 

Where c is the recombination constant, and n, p & 𝑛𝑖 are the electron, hole and intrinsic 

carrier concentration respectively. For small signal condition, the above equation reduces as 

follows: 

𝑅 ≅ 𝐶∆𝑝. 𝑁𝐷
2 =

∆𝑝

𝜏𝑝
 

Where  

𝜏𝑝 =
1

𝐶𝑁𝐷
2 

𝜏𝑝 is the minority carrier lifetime & 𝑁𝐷 is the donor density. Therefore, for highly doped 

semiconductor the lifetime of minority carrier is inversely proportional to the square of doping 
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concentration. Hence, Auger recombination becomes the dominant mechanism for degenerately 

or highly doped regions of the device. 

The bulk lifetime of carrier comprises of band-to-band lifetime, SRH lifetime and Auger 

lifetime and can be represented as follows [113, 114]  

1

𝜏
=

1

𝜏𝑏−𝑏
+

1

𝜏𝑆𝑅𝐻
+

1

𝜏𝐴𝑢𝑔𝑒𝑟
 

Where 𝜏𝑏−𝑏, 𝜏𝑆𝑅𝐻 & 𝜏𝐴𝑢𝑔𝑒𝑟 are the band-to-band, SRH and Auger lifetime respectively. 

2.3.4. Excitonic recombination 

Typically, the electron and hole are envisioned as separate charged particles that react to applied 

field independently, nevertheless there is a possibility that they are coupled together in a hydrogen 

atom like arrangement and move as a unit due to the Columbic attraction between unlike charges. 

The electron-hole pair is referred as exciton pair and if one of the elements are trapped at a shallow-

level site, the resulting formation is known as bound exciton. The energy required for exciton 

formation is slightly less than the bandgap energy and is imagined as introducing an energy level 

slightly below the conduction band, or above the valence band or both [95, 110] as shown in Fig 

4.9. The recombination of the exciton electron-hole pair results in sub-bandgap radiation especially 

at low temperature and is the major light producing mechanism is LED’s. 

The exciton binding energy for 𝑛𝑡ℎ level is given by [112, 115] 

𝐸𝑏 = −
𝜇

𝑚0
×

𝑅𝐻

𝑛2
×

1

∈𝑟
 

Where µ is the reduced mass, 𝑚𝑜 is the electron mass, 𝑅𝐻is the Rydberg constant and ∈𝑟 is the 

material dielectric constant. 
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Fig 2.9: Exciton recombination 

In the case of inorganic semiconductor such as silicon (∈𝑟= 11.9) the exciton binding energy is 

15 meV [116, 117] and since this energy is less than kT (25 meV), the exciton dissociates itself at 

room temperature, however for organic semiconductor ∈𝑟 ~2 −

5Error!  Bookmark not defined. [118]  and the exciton binding energy is in between 0.2 eV-1 eV 

[118-120], resulting in significant exciton recombination. 

2.3.5. Surface and grain boundary recombination 

We have implicitly assumed the semiconductor to be infinite in extent and we not concerned about 

boundary conditions, however in reality this is not the case. The material is finite in range, with 

boundaries at surface terminating the periodic nature of crystal, in addition, if the devices have 

interfaces with heterostructures, then this would also abrupt the perfect periodic potential. In 

addition, the surfaces and interfaces between material may acquire impurities from surrounding 

and have broken bonds. All these results in the interfaces have a distribution of traps throughout 

the bandgap, acting as good recombination centers. Fig 2.10 (left) shows pictographically the 

recombination at surfaces. 
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Fig 2.10: Surface Recombination(left) and surface carrier concentration(right) 

Also, from the earlier SRH recombination we learnt that recombination life time is inversely 

proportional to the inverse of the trap density. As we can see from Fig 2.10 (left), the surface trap 

densities are throughout the bandgap and hence they are greater than the bulk density.  From SRH 

recombination (for n-type semiconductor) we know,  

𝑅𝑏𝑢𝑙𝑘 ≅ 𝐶𝑝. ∆𝑝𝑏𝑢𝑙𝑘. 𝑁𝑡 =
∆𝑝𝑏𝑢𝑙𝑘

𝜏𝑝0
 

Where minority carrier hole lifetime 𝜏𝑝 =
1

𝐶𝑁𝑡
 , 𝑁𝑡 is the trap density and ∆𝑝𝑏𝑢𝑙𝑘 is the bulk carrier 

concentration. From SRH, recombination at surface can be written as[108] 

𝑅𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
∆𝑝𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝜏𝑠𝑢𝑟𝑓𝑎𝑐𝑒
 

We know that trap density at surface is more in comparison to the bulk, therefore 𝜏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 < 𝜏𝑏𝑢𝑙𝑘. 

Under steady state, carriers are generated and recombine at the same rate throughout the 

semiconductor, therefore 𝑅𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑅𝑏𝑢𝑙𝑘. Under this argument, we get (∆𝑝𝑠𝑢𝑟𝑓𝑎𝑐𝑒 < ∆𝑝𝑏𝑢𝑙𝑘), 

so the carrier concentration should decrease at the surface and this is shown in Fig 2.10 (right).  
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In adding to boundary condition at the physical edges of semiconductor that disturb the perfect 

periodic potential, there are termination of boundary conditions inside the material between crystal 

regions[111] i.e. between grains of polycrystalline films. This can be critical recombination 

mechanism in devices that use polycrystalline films.  Fig 2.11 shows the grain boundary 

recombination of n-type semiconductor as defined by Seager [121] 

 

Fig 2.11: Grain boundary Recombination (n-type semiconductor) 

Like surface recombination, grain boundary recombination also suffers from increased 

recombination and decreased carrier concentration at boundaries of grain. In addition, there is also 

a localized increase in potential at grain edges that influence the mobility of both electron and 

holes[121-123] as seen in Fig 2.11. To large extent, both grain boundary and surface recombination 

can be largely controlled by fine tuning processing condition. For polycrystalline films, grain 

boundary recombination can be reduced by increasing the grain size, this diminishes the surface 

area of grain boundaries and improves carrier collection. 

Surface recombination, is bit more challenging, but intelligent and careful processing steps could 

mitigate it. If possible one could passivate the surface states, however this is material dependent 
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and involves material explorations and could be a tedious approach. However, in the case of 

perovskite films, small attention to details like driving away the moisture before depositing each 

material type (as perovskite has different heterostructures sandwiched together) has helped achieve 

good charge collection. 

 

2.4. Carrier Transport 

Once the carriers are generated, it is important to know the movements of these excess carriers in 

space and time, and in the presence of electric field and charge density gradients. The behavior of 

these excess carriers can be described by ambipolar transport equation, and may be written as [108] 

𝐷′
𝜕2(𝛿𝑛)

𝜕𝑥2
+ 𝜇′𝐸

𝜕(𝛿𝑛)

𝜕𝑥
+ 𝑔 − 𝑅 =

𝜕(𝛿𝑛)

𝜕𝑡
 

The parameter 𝐷′ is the ambipolar diffusion coefficient, 𝜇′ is the ambipolar mobility, 𝛿𝑛 is the 

excess carrier concentration, g is the generation and R is the recombination rate. 𝐷′ & 𝜇′ are related 

by Einstein’s relation. Using the Einstein relation, the ambipolar diffusion coefficient and mobility 

can be written as  

𝐷′ =
𝐷𝑛𝐷𝑝(𝑛 + 𝑝)

𝐷𝑛𝑛 + 𝐷𝑝𝑝
 

𝜇′ =
𝜇𝑛𝜇𝑝(𝑝 − 𝑛)

𝜇𝑛𝑛 + 𝜇𝑝𝑝
 

𝐷𝑛 & 𝐷𝑝 are the electron & hole ambipolar diffusion coefficient, 𝜇𝑛 & 𝜇𝑝 are the electron & hole 

mobility, p & n are the thermal equilibrium electron and hole concentration.  

For Low injection and extrinsic doping, the ambipolar transport equation simplifies as follows 

For p-type semiconductor 

𝐷𝑛

𝜕2(𝛿𝑛)

𝜕𝑥2
+ 𝜇𝑛𝐸

𝜕(𝛿𝑛)

𝜕𝑥
+ 𝑔 −

𝛿𝑛

𝜏𝑛𝑜
=

𝜕(𝛿𝑛)

𝜕𝑡
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And for n-type semiconductor 

𝐷𝑝

𝜕2(𝛿𝑛)

𝜕𝑥2
+ 𝜇𝑝𝐸

𝜕(𝛿𝑛)

𝜕𝑥
+ 𝑔 −

𝛿𝑛

𝜏𝑝𝑜
=

𝜕(𝛿𝑛)

𝜕𝑡
 

Where 𝜏𝑛𝑜 & 𝜏𝑝𝑜 are minority carrier electron lifetime.  

It’s important to recognize from ambipolar transport equation that the diffusion, drift and 

recombination of excess carriers are that of the minority carrier. Also, from the transport equation, 

we know that two mechanisms namely diffusion and drift regulate carrier transport. Accordingly, 

two collection types namely Diffusion based collection & Field based collection occurs in devices. 

Material properties such as crystallinity, diffusion length etc. determine them. 

2.4.1. Diffusion based collection 

Let us consider a p-type semiconductor in which excess carriers are generated at 𝑥 = 0 (𝑔 =

0 𝑓𝑜𝑟 𝑥 ≠ 0)with zero applied bias (𝐸=0) and let us assume the semiconductor is at steady state 

(
𝜕(𝛿𝑛)

𝜕𝑡
= 0), the ambipolar transport equation simplifies and can be written as  

𝐷𝑛

𝜕2(𝛿𝑛)

𝜕𝑥2
−

𝛿𝑛

𝜏𝑛𝑜
= 0 

The generated excess minority carrier will diffuse and concentration will vary as a function of x. 

The above equation, gives the following minority carrier concentration  

𝛿𝑛(𝑥) = 𝛿𝑛(0)𝑒
−

𝑥
𝐿𝑛 

𝐿𝑛 = √𝐷𝑛𝜏𝑛𝑜 is the diffusion length of minority carrier and is the average length a carrier travels 

between generation and recombination. As the diffusion length increases the distance travelled by 

minority carrier increases [108]. The maximum thickness of the bulk for a solar cell will be 

determined by its diffusion length. 
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 In general, we like to have thicknesses of bulk in micrometers to absorb all photons, but if the 

diffusion is not in the micrometer range we need to reduce the thickness. In general, it’s a good to 

have device thickness (t) less than diffusion length (t<𝐿𝑛) to ensure good collection. Since, 

Crystalline Silicon have minority carrier diffusion lengths in the 100’s of micrometer range, the 

solar cells are made on wafers of comparable thicknesses. Fig 2.12 shows the structure of HIT 

solar cell made on p-type substrate, all excess carriers generated in the bulk is collected by 

diffusion. 

 

Fig 2.12: Diffusion assisted transport HIT solar cell [112] 

2.4.2. Field based collection 

Let us consider a p-type semiconductor with negligible diffusion coefficient (𝐷𝑛
𝜕2(𝛿𝑛)

𝜕𝑥2 = 0), an 

internal field E, no generation (𝑔 = 0), at steady state (
𝜕(𝛿𝑛)

𝜕𝑡
= 0), the ambipolar transport equation 

for this can be written as  

𝜇𝑛𝐸
𝜕(𝛿𝑛)

𝜕𝑥
−

𝛿𝑛

𝜏𝑛𝑜
= 0 

The distribution of carriers can be written as 
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𝛿𝑛(𝑥) = 𝛿𝑛(0)𝑒
−

𝑥
𝐿𝑛𝐷𝑟𝑖𝑓𝑡 

𝐿𝑛𝐷𝑟𝑖𝑓𝑡 = 𝜇𝑛𝜏𝑛𝑜𝐸, is the carrier drift length or Range, the distance travelled by minority carrier 

owing to the internal field before it recombines [124, 125]. For good collection, thickness of device 

should be lesser than drift length (𝐿𝑛𝐷𝑟𝑖𝑓𝑡). For example, amorphous silicon has very low diffusion 

length[126-128], hence it’s not possible to have 100 micrometer thick films. Nevertheless 

amorphous silicon has high absorption coefficient and thin film solar cells with thickness ~ 1um 

can be made using PIN structures. Note that the intrinsic region of these cells is completely 

depleted and carrier collection is field assisted. Fig 2.13 shows the band structure of 

𝑃+𝑖𝑁+amorphous Thin film solar cell. 

 

Fig 2.13: Drift assisted transport in Amorphous Silicon solar cell [129] 

2.5. Carrier Separation 

Photovoltaic energy conversion is a result of generation, separation and transport. Charge 

separation requires a driving force that needs to be inbuilt in the device. The essential force for 

charge separation can be provided by creating a gradient in one of the quasi-fermi levels during 

the photogeneration process. Looking at it differently if an external circuit provides low resistance 

path to one carrier type that could also induce a charge gradient. There are many other ways of 
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attaining charge separation, the most common approach is by creating a spatially varying 

electrostatic field within the material.  

A junction between two electrically dissimilar material creates a non-zero electric field producing 

a drift current. Correspondingly, a gradient in carrier concentration causes diffusion current. 

Charge selective contacts can produce the necessary concentration gradient across the film 

thickness. Carrier density gradient is an outcome of difference in generation and recombination 

rate and this can result in a net current only if the electron and hole diffusion constants are different, 

as if they are the same, electron and hole current will cancel each other. 

Dember potential, the potential arising due to difference in diffusion constants is not large enough 

in crystalline material for effective charge separation. However, large diffusive current can be 

generated by an added mechanism that creates an asymmetry and selectively removes electron or 

holes. As mentioned before, this could be carrier selective contact. For example, by creating a low 

resistive path to electrons, the contact will now act as an electron sink and start driving an electron 

diffusive current. As no holes were collected, electron and hole current do not cancel out. In the 

same way, there could be second contact to selectively remove holes and drive a hole diffusion 

current. 

Charge separation can also be inbuilt in the material by creating an internal field. There are four 

ways to create a field within a semiconductor material. 

1. Gradient in electron affinity in material. 

2. Gradient in work function in material. 

3. Gradient in bandgap 

4. Gradient in band density of states 
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1,2 & 3 are exploited in PV research, and can be realized at the interface of two semiconductor 

material using heterojunctions and rightly so, this was used by us for efficient charge 

separation. There are three types of hetero-junction: Type I, Type II & Type III. 

In Type I heterojunction (Straddling) the bandgap of one material completely overlaps the 

bandgap of second material. Type II (staggered) both the conduction band and valence band 

of one material is lower than the corresponding band edges of second material. Type III (broken 

gap) the band edges do not overlap at all, the conduction band of one material is below the 

valance band of second material. Fig 2.14 shows the schematic of different types of 

heterojunctions. 

 

Fig 2.14: Types of heterojunction[130] 

 

2.6. Equivalent Circuit of a Solar Cell 

The equivalent circuit of a solar cell is shown in Figure 2.15. The circuit has current source 𝐼𝐿, two 

diodes 𝐷1 & 𝐷2, a series resistance 𝑅𝑆 and a shunt resistance 𝑅𝑆𝐻. The two diodes 𝐷1 & 𝐷2 each 

represent a recombination mechanism, 𝐼𝐿 is a constant current generator that represents the 

photogeneration process and is proportional to light intensity, 𝑅𝑆 signifies the series resistance 

across the bulk and contacts (series resistance needs to be as low as possible, high series resistance 
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can reduce the short circuit current), 𝑅𝑆𝐻 the shunt resistance or parallel resistance represents the 

resistance of alternate paths that prevents the photo current from reaching the load (Examples are 

pin holes, crystal edge, grain boundaries in polycrystalline films etc.) The shunt resistance needs 

to high as possible, low shunt resistance will diminish open circuit voltage. 

 

Fig 2.15: 2-Diode model solar cell equivalent circuit[131] 

In an ideal diode, the ideality factor is 1. This entails that all the recombination is occurring in the 

bulk and at the surface, however, there is recombination in the depletion region too and this is 

denoted by ideality factor 2. The probability of carriers recombining in the junction, increases with 

the width of depletion region, the width is a function of voltages across the diode. Therefore, 

ideality factor is also a function of voltage across the device. The net current can be written as 

𝐼 = 𝐼𝐿 − 𝐼𝐷1 − 𝐼𝐷2 − 𝐼𝑠ℎ 

𝐼 = 𝐼𝐿 − 𝐼01 [exp (
𝑞(𝑉 + 𝐼𝑅𝑠)

𝐾𝑇
) − 1] − 𝐼02 [exp (

𝑞(𝑉 + 𝐼𝑅𝑠)

2𝐾𝑇
) − 1] −

(𝑉 + 𝐼𝑅𝑠)

𝑅𝑆𝐻
 

𝐼01 is the reverse saturation current density & 𝐼02 is the generation current density 

respectively. The different current regions of a diode can be seen by plotting the dark IV curve of 

a diode in Semilog plot. 
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Fig 2.16: Dark IV curve[112] 

At very low voltage, shunt current through 𝑅𝑆𝐻 is dominant, then as voltage increases, 

current increases exponentially in 2 different regimes (Ideality factor 1 for higher voltage & 

Ideality factor 2 for lower voltage) due to the different recombination mechanisms which is a 

function of voltage. As current increases, further, voltage drop across the series resistance starts to 

become important, thus limiting the current and causing the IV curvw to deviate from exponential 

behavior. Also, at higher current regime we get into high level injection and ideality factor 

becomes 2. 

2.7. IV Curve of a Solar Cell 

The light IV curve is simply the superposition of the dark IV curve with the light generated 

current[132], the photovoltaic effect has the ability to shift the IV curve into the 4th quadrant where 

power can be extracted from the solar cell. For mere visual convenience, we flip the IV in the first 

quadrant. Fig 2.17 shows a visual representation of current generation and the resulting IV 

curve[133]. 
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Fig 2.17: Light IV curve 

2.7.1. Short circuit current 

The short circuit current is the maximum conceivable current from a solar cell and it occurs when 

the voltage across the solar cell is zero. The short circuit commonly denoted by 𝐼𝑆𝐶  is a resultant 

of generation and collection of photo generated carriers and for moderate resistive losses photo-

generated current is equal to short circuit current. The short circuit current depends on collection 

probability, optical properties of material (absorption & reflection), spectrum of light, number of 

photons and area of solar cell (to eliminate effect of area it is denoted as Short circuit current 

density 𝐽𝑆𝐶  in 
𝑚𝐴

𝑐𝑚2). The short circuit current has a strong dependence on generation and diffusion 

length and can be approximated by the following equation. 

𝐽𝑆𝐶 = 𝑞𝐺[𝐿𝑛 + 𝐿𝑝] 

G is the generation rate, 𝐿𝑛 & 𝐿𝑝 are the electron and hole diffusion length respectively. The short 

circuit current of solar cell is shown in Fig 2.18. 
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Fig 2.18: Short circuit current[134] 

2.7.2. Open circuit voltage 

The open circuit voltage symbolized by  𝑉𝑂𝐶 is the maximum voltage available from a solar cell 

occurring at current zero and signifies the forward bias on the solar cell junction due to photo-

current. Fig 2.19 shows the open circuit voltage in the IV curve. The 𝑉𝑂𝐶 of a solar cell can be 

written as 

𝑉𝑂𝐶 =
𝑛𝑘𝑇

𝑞
𝑙𝑛 [

𝐼𝐿

𝐼0
+ 1] 

𝐼𝐿 & 𝐼0 are the photo-generated and reverse saturation current respectively. 𝐼𝐿 has a small influence 

on 𝑉𝑂𝐶, while 𝐼0 has a large influence of open circuit voltage, as 𝐼0  changes in orders of magnitude 

in correspondence to the recombination in the device. Therefore, if recombination increase, 𝑉𝑂𝐶 

decreases. Since 𝐼0 is a strong function of intrinsic carrier concentration, which is a function of 

bandgap of the semiconductor, as bandgap increases 𝐼0 decreases causing the 𝑉𝑂𝐶 to increase (the 

quasi-fermi level splits more for wider bandgap materials). Also, since 𝐼0 is function of 

temperature, 𝑉𝑂𝐶 is also a function of temperature. The equation for 𝐼0 and 𝑛𝑖 (intrinsic carrier 

concentration) are given below. 
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𝐼0 = 𝑞. 𝑛𝑖
2 [

𝐷ℎ

𝐿ℎ𝑁𝑑
+

𝐷𝑛

𝐿𝑛𝑁𝑎
] 

𝐷ℎ & 𝐷𝑛 is the hole and electron diffusion coefficient, 𝐿ℎ & 𝐿𝑛 is hole & electron diffusion length 

and 𝑁𝑑  & 𝑁𝑎 are donor and acceptor concentration.  

𝑛𝑖
2 = 𝑁𝑐𝑁𝑣𝑒𝑥𝑝 [−

𝐸𝑔

𝐾𝐵𝑇
] 

𝑁𝑐 & 𝑁𝑣 are the conduction band and valence band states and 𝐸𝑔 is the bandgap of the 

semiconductor. 

 

Fig 2.19: Open circuit Voltage [135] 

2.7.3. Fill factor 

Fig 2.20 represents the Fill factor (FF) representation of a solar cell. As one can envision, even 

though 𝑉𝑂𝐶 and 𝐼𝑆𝐶  are the maximum attainable voltage and current, the achievable power at these 

points are zero. FF helps determine the maximum power from the solar and is defined as the ratio 

of maximum obtainable power to the product of 𝑉𝑂𝐶 & 𝐼𝑆𝐶  and be written as 

𝐹𝑖𝑙𝑙 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑉𝑀𝑃×𝐼𝑀𝑃

𝑉𝑂𝐶×𝐼𝑆𝐶
 

FF is the ‘squareness’ or measure of largest rectangle that can be drawn inside the IV curve 

Graphically it can be visualized that the rounded part of IV curve takes lesser area with increasing 
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open circuit voltage (i.e. bandgap of semiconductor). For example, best Silicon lab devices have a 

fill factor of 0.85 while best GaAs device has a FF approaching 0.89[136]. Fig 2.20 shows Fill 

factor representation of a solar cell. 

 

Fig 2.20: Fill factor [136] 

The factor that influence the solar cell from achieving maximum fill factor are series resistance 

(needs to be minimum), shunt resistance (needs to be maximum) and recombination (Ideality 

factor n=1). As the carrier collection increases, the fill factor will improve. 

2.7.4. Efficiency 

Efficiency (𝜂) is the parameter use to measure the performance of a solar cell and is defined as 

the ratio of output power to input power (𝑃𝑖𝑛). It can be written as 

𝜂 =
𝑃𝑚𝑎𝑥

𝑃𝑖𝑛
=

𝑉𝑂𝐶𝐼𝑆𝐶𝐹𝐹

𝑃𝑖𝑛
 

Since 𝑉𝑂𝐶 is a function of temperature & 𝐼𝑆𝐶  is a function of spectrum and intensity. The condition 

for efficiency measurement is standardized, for terrestrial solar cells efficiency is measured under 

AM1.5 condition at a temperature of 250𝐶 (room temperature). The input power for solar cell 

calculation is taken as 100 
𝑚𝑊

𝑐𝑚2
 . 



www.manaraa.com

47 

 

An ABET 105000 solar simulator (uses a Xenon lamp) with a AM1.5G filter from ABET 

technologies was used to produce the full solar spectrum. Fig 2.21 shows the solar spectrum 

generated from ABET 105000, as one can see the ABET 105000 has additional photons in IR 

spectrum, these photons are not absorbed by Perovskite due to its larger bandgap. However, they 

need to be removed and are cutoff using the AM1.5G filter because the ABET 105000 are 

calibrated using Silicon solar cells and Si absorbs in the IR spectrum. 

 

Fig 2.21: Solar spectrum ABET 105000[137] 

A Keithley 236 source-measure unit run using a LabVIEW program was used to measure the IV 

curve. In Perovskite solar cells, direction of measurement and light soaking has a significant 

impact on the IV curve. Therefore, as a standard IV measurements were done from high bias 

voltage to low bias condition, and for hysteresis measurements it is quickly followed by an 

immediate sweep from low bias to high bias. The LABVIEW programs measures the open circuit 

voltage and short circuit current before the sweep. It starts the sweep at voltage 15% above the 

measured 𝑉𝑂𝐶 to a low bias of -1 Volt. Lot of information can be extracted from just the IV curve, 

if the current continues to increase at lower bias, then we know that there is a collection problem. 
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Also, if the IV curve has a double diode, we know there is a Ohmic contact issue at either the front 

or back contact. 

 

2.8. External Quantum Efficiency 

The external quantum efficiency (EQE) [138-141] of a solar cell is the ratio of number of carriers 

generated by the solar cell to the number of photons of corresponding wavelength incident on the 

it. If all the carriers for a given wavelength are collected then the EQE for that wavelength should 

be 1, however the EQE can never be 1, because even if there is no recombination and say that all 

photons are absorbed, there is still reflection from the film and substrate. Hence, EQE cannot be 

one (unless higher energy photons can excite 2 carriers). The EQE of a typical Silicon solar cell is 

shown in Fig 2.21.  

 

Fig 2.22: Quantum efficiency [142] 

EQE can be written as 

𝐸𝑄𝐸 =
# 𝑜𝑓 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 (𝜆)

# 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 (𝜆)
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The EQE is very powerful analysis tool and lot of information can be collected from its detailed 

analysis. EQE can be used to determine the bandgap, as EQE for photons below the bandgap of 

material is zero. Mainly it gives us information of carrier collection, hence diffusion length can be 

directly determined. Also, if one is designing Heterostructures for carrier collection, then surface 

recombination either front/back service can be known from EQE. Also, the thickness of the device 

required for optimum carrier collection can be experimentally determined using EQE. 

In addition to above, EQE has been used for obtaining information on 𝜇𝜏 product, band-tail and 

mid-gap defects, mechanisms of degradation, optimizing tandem-junction and graded junctions 

cells by V.L. Dalal et al [1986][138]. 

A schematic of the QE measurement set up is shown in Fig 2.23 

 

Fig 2.23: QE measurement set up[112] 

A halogen lamp generates white light which is monochromatized, the incident lights photon flux 

is known using a reference solar cell (Silicon) whose EQE at different 𝜆 is known. Following this 

the sample solar cells signal is measured and EQE is obtained by comparing the sample’s signal 

with that of reference using the following equation: 

𝐸𝑄𝐸 =
𝑆𝑖𝑔𝑛𝑎𝑙 𝑓𝑟𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒(𝜆)

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
×

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑆𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝜆)
×𝑄𝐸 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝜆) 
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Higher order harmonics from the monochromator is cutoff using necessary filters, also unwanted 

signal such as external lights in the measurement room or from unknown interfering 

electromagnetic noise is isolated using a lock-amplifier. 

 

 2.9. X-ray Diffraction [143]  

To observe objects, a source of rays and detector is required. However, atoms whose atomic radii 

are from few tenths of an angstrom to few angstroms are too small to be distinguished using normal 

light sources. X-rays have wavelength ranging from ~0.1Å 𝑡𝑜 ~100Å. The X-rays sources used 

in crystallography range from ~0.5Å 𝑡𝑜 ~2.5Å, as they correspond to the shortest interatomic 

distance of all observed inorganic and organic compounds, also, they can be easily generated in 

laboratories.  

When X-rays propagate trough a substance, the following processes occur: 

1. Coherent scattering, produces photons of same wavelength as incident beam (no loss of 

energy) 

2. Incoherent scattering, produces photon of longer wavelength due to partial loss of photon 

energy in collisions with core electrons (Crompton effect). 

3. Absorption, photons are dissipated due to random direction scattering, also loss of photon 

energy due to photoelectric effect. 

Only coherent scattering results in diffraction. It’s know that when waves interact with point 

object, the outcome is a new wave that scatters in all direction, with origin of wave coinciding 

with object. If no energy loss occurs, the resulting wave has same frequency of incident wave 

and we refer to the process has elastic scattering. If two or more-point sources are involved in 

the elastic scattering process, they all produce spherical waves which interact with one another. 
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If two scattered waves are propagating parallelly, in complete phase, their amplitude is doubled 

(constructive interference) and if they are completely out of phase they distinguish one another 

(destructive interference).  

Constructive interference that occurs between periodic array of points, increases the amplitude 

of resultant wave by many orders of magnitude and this phenomenon is the corner stone of 

powder diffraction. In 1913-1914, W.H. Bragg and his son W.L. Bragg formulated Bragg’s 

law that related diffraction angle, wavelength and interplanar spacing, the crystal structure can 

be determined from Bragg’s law and it is written as follows 

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃 

Fig 2.24 shows a schematic Bragg-Brentano diffractometer and elastic scattering of incident 

waves. 

 

Fig 2.24: X-ray Diffractometer [144] 

It is important to note that X-rays scatters from electrons, more precisely the electron 

density which is distributed periodically in the crystal lattice. Other types of radiation like neutron 

and electron beam can also diffract from crystals and produce diffraction pattern and give crystal 

structural information. Unlike X-rays, neutrons are scattered from nuclei and do not suffer from 

atomic scattering factor, while electrons interact with electrostatic potential. Since, nuclei (for 

neutron diffraction), electron density (for X-ray diffraction) and electrostatic potential (for electron 
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scattering) are distributed equally in the same crystal, Neutron, X-ray or Electron diffraction can 

all be used for obtaining information on crystal structure. The key difference in them is the 

comparative differences in the intensity of the diffracted signal. 

 

2.10. Scanning Electron Microscopy[145] 

The Scanning electron microscope (SEM) uses a high-energy focused electron beam to 

scan a sample and produce an image. Electron beam is produced via thermal or field emission 

using an electron gun. The beam is focused using electromagnetic lenses and rastered across the 

sample using scanning coils. The primary electron beam interacts with the electrons present in the 

sample and generates different kinds of signal, such as Secondary electrons (SE), Backscattered 

electrons (BSE), Auger electrons, Cathodoluminescence, Phonons, Plasmons and Characteristic 

X-rays. These signals provide information on samples surface topology, chemical composition, 

crystallography etc. in accordance to the application. Most SEM’s are mainly used for Secondary 

electron imaging, Backscattered imaging and for EDS purposes. 

Secondary electrons (SE) are generated by the interaction of the electron beam with the 

electrons in the conduction band of the sample. On interaction, the conduction band electrons gain 

kinetic energy and are ejected and mostly have energy in the range of 5-10eV. 50eV is considered 

the cut-off for secondary electrons. Since they are low energy electrons they do not have energy 

to propagate through the surface of the material, therefore they are restricted to the surface i.e. 100 

nm of the surface. These electrons help produce topographical information of the surface. 

Increasing the tilt can increase the SE generation, as it increases surface volume interaction of the 

electron beam. SE imaging is ideal for rough imaging rough samples. 
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Back scattered electrons (BSE) are generated due to elastic scattering of the electron beam 

and increases with increase in atomic number of material. High Z material has high BSE 

coefficient. Change in tits also increase BSE generation, however the increase is not much as in 

comparison with how much it increases with Atomic number. BSE image produces an atomic 

contrast image of the sample, therefore are useful for imaging samples that are flat, polished with 

varying Z contrast. 

When high energy electrons strike a sample, the collision can cause the tightly bound inner 

shell electrons to be ejected, leaving the atom in an excited state. This leads to a transition of 

electrons from higher energy shells to lower energy shells and the excess energy of the higher 

energy shells are released as characteristic X-ray photons. The energy of the X-ray photon is 

characteristic of the material and used for quantitative and qualitative analysis in EDS. Fig 2.25 

shows a schematic of SEM. 

 

Fig 2.25: Scanning Electron Microscope[146] 
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2.11. Basic Device Terminologies 

The supporting structure that we grow thin films on is called a substrate and based on thin 

film solar cell designs we can distinguish them further into substrate and superstrate. If the 

substrate acts as only a supporting structure we call them as substrate, however when they act as 

both as supporting structure and window to the incident light, they are known as superstrates. 

Superstrates solar cells are comparatively cheaper as we save on encapsulation cost, also, they act 

as UV filters. Perovskites solar cells in this work are all based on superstrate design. 

In Perovskite structure, we use both n-type Type & p-type Type II heterojunction for 

corresponding carrier extractions. If light is incident on the solar cell through n-type Type II 

heterojunction, by convention we refer to this device architecture as NIP. In the contrary if light 

enters through the p-type Type II heterojunction, we refer to this architecture as PIN. Fig 2.26 

shows the two superstrate architectures. 

 

Fig 2.26: PIN vs NIP 
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CHAPTER 3 

 PROCESS DEVELOPMENT AND SYSTEM DUILDING  

 

A striking advantage of Perovskites solar cells is the different ways one can fabricate it. A variety 

of solution and vapor based approaches have been reported till date that includes one step spin 

coating[147-149], two step techniques[14, 150], solvent-solvent extraction[150], vapor assisted 

solution process[26, 151, 152], Co-evaporation[55, 153-158], hybrid deposition[159-161], hybrid 

chemical vapor deposition[162, 163], sequential vapor deposition[164, 165], flash evaporation 

[166]etc. The multiple ways of film depositions and ability to have low temperature process has 

given researchers the ability to coat and process on flexible substrates too. Fig 3.1 shows the 

multiple ways of Perovskite film deposition.  

 

Fig 3.1: Film deposition techniques[167] 

Solution and vapor approach, both show potential in regards to scalability. Solution could work 

out cheaper, however the remnant solvent in the material brings a query on the stability of solution 

device over vapor. As we know, stability is one of the biggest concerns with respect to perovskite 

material.  Vapor deposition is a mature technique and is presently being used in Thin film solar 
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cell industry, Liquid-crystal display industry, glazing industry etc. In addition, vapor deposition 

technique is process compatible with the methods of both Silicon based and Thin film based solar 

cells for Tandem applications. In the future, if stable higher efficiency vapor devices are possible, 

we might already have the infrastructure required in place to scale up this technology. Vapor 

processing has numerous advantages over solution processing. 

1. High purity films will be formed by sublimating the powder precursors after extensive 

outgassing under a vacuum environment 

2. Precise stoichiometry can be obtained irrespective of the precursor using vapor approach. 

This is complex via solution method due to solubility limits, for example, if one wants to 

make mixed halide perovskite (𝑀𝐴𝐼3−𝑥𝐶𝑙𝑥) perovskite using solution approach, the 

precursors will not dissolve in DMF for higher 𝑃𝑏𝐶𝑙2 ratio, the highest mixable 

concentration in DMF for 𝑃𝑏𝐶𝑙2: 𝑀𝐴𝐼 is 1:3. 

3. The commonly used solvents in solution devices such as DMF (Boiling point~1530𝐶), 

DMSO (Boiling point~1890𝐶), Water (Boiling point~1000𝐶), Chlorobenzene (Boiling 

point~1310𝐶) etc. have relatively high boiling points in comparison to degradation 

temperature of perovskite film as we will see in Chapter 5. Most, solution processed 

devices are annealed at a mere temperature of around 70~1200𝐶 [168-170], at these 

temperatures it is unlikely that the solvents are completely driven away and there is a high 

likelihood that solvents are intercalated between grains or crystallites.  

4. With vapor deposition it is possible to make several stacks of films for multilayered 

structure[165], this is not possible via solution approach. Since, the solvents will wash 

away the underlying structure. 
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5. Vapor Perovskites films can be evaporated on any substrates, the wettability issues is not 

a concern (Fig 3.21) when it comes to vapor evaporated Perovskites. This is somewhat of 

problem when it comes to solution devices, as DMF solvents will not wet most polymer 

transport layers (Poly-TPD, PCDTBT, P3HT, PTAA etc.) other than Pedot-PSS.  

6. Contrary to popular belief Perovskite is a field controlled device [171], precise thicknesses 

~300nm is vital for good charge collection. Optimizing the concentration and spin speed 

of solution for obtaining exact thickness is tedious and exhaustive. Vapor approach gives 

you precise device thicknesses easily. 

In this thesis, we will consider different vapor based fabrication approaches, study their advantages 

and disadvantages, and modifications that we had to impart on deposition tool and discuss tool 

building. The tools designed and modified by us had to make systematic changes based on issues 

faced and practicality for making highly efficiency consistent vapor based devices. There are two 

primary approaches for making vapor devices: 

1. Sequential evaporation  

2. Co-evaporation.  

 3.1 Sequential Evaporation 

Sequential vapor approach was first proposed Yang Yang et al, and is shown in Fig 3.2. The 

approach takes advantage of kinetic reactivity of MAI.  

 

Fig 3.2: Vapor assisted solution process[172] 
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Yang Yang et al used a NIP architecture: FTO/𝑇𝑖𝑂2/Perovskite/Spiro meotad/Silver. The steps 

suggested in the original paper was as follows: 𝑃𝑏𝐼2 (0.87 Molar solution) was spin coated on 

FTO/𝑇𝑖𝑂2 following which it was annealed in a petri-dish with MAI at 1500 𝐶 for 4 hours. 

However, there were many issues with this approach.   

Our goal has always been to make consistent and reproducible high efficiency devices and this 

was not possible using the original recipe, so we decided to use the above idea but change the 

processing methods. Numerous studies were conducted by us to understand the mechanisms 

involved and in optimizing each layer of our architecture and by using results from IV, QE, SEM, 

EDS, XRD & optical imaging (pin holes), we attained our goals. The processing modifications we 

applied will be discussed in detail. Recipes also had to be modified corresponding to device 

architecture (NIP or PIN) and precursor used (MAI or FAI). We will start the discussion with NIP 

(MAI), followed by PIN (MAI) and finally NIP(FAI). 

3.1.1. NIP sequential devices 

 

Fig 3.3: Sequential Vapor using Graphite 
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Fig 3.3 shows the NIP sequential vapor deposition process 𝑃𝑏𝐼2 is vapor deposited followed by 

MAI vaporization. Instead of petri-dish, we used a Graphite boat. The fabrication steps are follows: 

3.1.1.1. Transport layers 

Titanium dioxide is used as our n-type Type II heterojunction, it has a wide bandgap of ~ 

3.5eV[173] [174], its conduction band edge lies at ~ 4.0eV (Fig 1.16) and valence band edge lies  

~7.5 eV (Fig 1.16), making it a good n-type Type II heterojunction for perovskite whose 

conduction band edge is at ~3.85 eV & valence band edge at ~5.4eV (Fig 1.16). Therefore, 

allowing collection of electrons while blocking holes, the 𝑇𝑖𝑂2 film was deposited using spin 

coating and its recipe is given below.  

The 𝑇𝑖𝑂2 film was spun coated and its recipe is follows: 0.15 M and 0.3M titanium Diisopropoxide 

Bis(acetylacetonate) (Sigma Aldrich) is spun coated at 6000 rpm for 30 s subsequently. Post drying 

at 125°C for 10 min, they are sintered at 550°C for 15 min in air. The substrate is then immersed 

in 50 mM TiCl4 (Aldrich) aqueous solutions for 30 min at 70 °C and washed with distilled water 

and isopropanol, followed by annealing at 550 °C for 30 min in air to form a compact n-type layer 

of 𝑇𝑖𝑂2. Fig 3.4 shows the transmission of 𝑇𝑖𝑂2, it has 90% transmission. 

 

Fig 3.4: Titanium Dioxide transmission 
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Before, the p-type Type II heterojunction is mentioned, we need to go back to the timeline of 

this work. This work was performed in the beginning of 2014, at that time the material was 

still new to everyone. The highest efficiency at that point for NIP vapor and solution was only 

15% [14, 15] and all groups used 𝑇𝑖𝑂2 and Spiro-meotad as n-type and p-type Type II 

heterojunction respectively. However, we chose a different path and the reason being for Spiro 

to work Lithium salt had to be added as a dopant, that bothered us a Lithium is known to 

diffuse[175-178] through in materials and not much was known about Spiro either, it was also 

novel to PV applications [41, 42]. 

Hence, P3HT (1-Material) is used as our p-type Type II heterojunction. As one knows, P3HT 

is crystalline for polymers [179] , and most studied in regards to organic polymers and we had 

experience with this polymer. Its conduction band edge is at 2.9 eV and valence band edge is 

at 5.1 eV [180], thus, making it a good candidate for p-type Type II heterojunction. The 

optimized recipe for P3HT was found is given and it corresponded to a thickness of 30nm. The 

results will be discussed in Chapter 4 and this work was published [181]. 

P3HT concentration: 12mg/ml in Chlorobenzene 

Spin speed: 4000 rpm 

Annealing condition post spin coat: 1100𝐶/15mins in Glove box [Nitrogen Ambient] 

3.1.1.2. Metal contacts 

Pure gold with a work function of ~5.3-5.4 eV[182] makes a good contact with P3HT and 

hence used as our back contact (hole extraction). 80-90nm of gold (Ames lab) was deposited 

using Thermal evaporation on P3HT at a rate of 15-20 Å/𝑠 and typically 1 gm of gold was 

used per run.  
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FTO coated glass (Pilkington), the transparent conducting film with a work function is ~4.2-

4.4 eV [183] makes a good contact with 𝑇𝑖𝑂2 and hence, used as our front contact. 

3.1.1.3.  Thermally evaporated lead iodide 

The key reason for evaporating Lead iodide is so that the active layer is devoid of any solvent 

and groups have shown that perovskites form complexes with solvents like DMF[184], DMSO 

[168] and 𝐻2𝑂 [185]. Hence, it was important to move away from spin coating of Lead iodide. 

Another problem we encountered spin coating 𝑃𝑏𝐼2 was that it was inconsistent from one film 

to the next and this will be highlighted using both SEM and Optical images of lead iodide 

films. Fig 3.5 shows variation in the morphology and grain size of spin coated 𝑃𝑏𝐼2 on 

FTO/𝑇𝑖𝑂2, also some of the films are porous which could create significant differences in the 

eventual grain size. 

 

Fig 3.5: SEM images Spin coated 𝑃𝑏𝐼2  

These variations arise from reasons as simple as the order in which one spin coats substrates 

to age of solution. The solution [DMF+𝑃𝑏𝐼2] is stirred overnight in hotplate at 800𝐶 for spin 

coating next day morning, for the first spin coating the temperature of 𝑃𝑏𝐼2/DMF solution is 
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say ~ 800𝐶, however for the successive spin coating the solution temperature is different as 

𝑃𝑏𝐼2 takes time to attain the same temperature, spin coating cold solution is not an option, as 

𝑃𝑏𝐼2 will start to crystallize if the DMF solvent is not at hot temperature. Also, every time you 

open the bottle for spin coating the concentration is increasing considering that DMF’s flash 

point is 580𝐶.  

In regards to the age of solution, it’s not practically possible to do experiments at exact time 

every single time. And thus, keeping for 12hrs to 18hrs might bring about changes in the 

concentration and miscibility of solutions, also the solution is stirred in glass vial’s which are 

not conflat flange sealed, so concentration will change in regards to how long the solution is 

stirred. Fig 3.5 shows the differences in grain size of hybrid Perovskite (𝑃𝑏𝐼2 is solution and 

MAI is vapor) because of varying morphology of 𝑃𝑏𝐼2 on FTO/𝑇𝑖𝑂2 superstrate. 

 

Fig 3.6: SEM images Hybrid Perovskite  

Though, from a device point of view grain morphology of 𝑃𝑏𝐼2 is unimportant, nevertheless it 

influences grain size of perovskite and thus, is a serious concern. We require as large a grain 
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as possible to counteract the effect of grain boundary recombination and enhance carrier 

collection and if there is variation in grain size’s, device performances will differ. Hence, we 

vaporized 𝑃𝑏𝐼2. Fig 3.7 shows the morphology of evaporated 𝑃𝑏𝐼2 on different sample’s, they 

have the same grain structure and packing density. 

 

Fig 3.7: SEM images Vapor 𝑃𝑏𝐼2 

In addition, to have consistent morphology, the 𝑃𝑏𝐼2 films were pin-hole and consistent from 

run to run. Fig 3.8 shows optical images of 𝑃𝑏𝐼2 film with light shining from bottom. 

 

Fig 3.8: Optical images  𝑃𝑏𝐼2 

𝑃𝑏𝐼2 was evaporated thermally using Radak furnaces[186] from Luxel, Fig 3.9 shows an image 

of the thermal evaporator with the Radak furnace installed and 𝑃𝑏𝐼2 crucible. 
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Fig 3.9: Thermal evaporator- Radak furnace 

 

3.1.1.4. Graphite boat Perovskite formation 

Device to device consistency is crucial and the MAI vaporization procedure in the petri-dish was 

highly inconsistent. Not just in mere device performance, but in perovskite formation itself. The 

procedure as described by Yang Yang was to keep the 𝑃𝑏𝐼2 coated substrate in a petri-dish 

surrounded by MAI followed by heating the dish to 1500𝐶 in glovebox. And on doing so the film 

will turn from yellow to black, signifying the formation of Perovskite. Fig 3.10, shows an image 

of substrate in the petri-dish before and after perovskite formation (ideal case).  
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Fig 3.10: Ideal perovskite formation Petri-dish 

However, this does happen always, often the perovskite is incomplete and films look different, 

creating a device to device variance. Fig 3.11, shows images of 16 perovskite films, each one looks 

different.  

 

Fig 3.11: Incomplete perovskite formation Petri-dish 

The reason for incomplete perovskite formation is that the petri-dish does not seal the MAI vapor 

efficiently, hence there is no build of MAI vapor inside the dish leading to insufficient 

concentration of MAI for both nucleation and grain formation and can be explained using Lamer-
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Dinegar model. Fig 3.12 describes the model that is based on classical nucleation theory [187, 

188]. 

 

Fig 3.12: Lamer Dinegar model [188] 

 In fig 3.12, ‘I’ represent the induction regime, ‘N’ is the nucleation regime, ‘G’ is grain growth 

regime, 𝑛∗ is the minimum concentration required for nucleation and 𝑛𝑠𝑎𝑡 is the minimum 

concentration for grain enhancement i.e. grain enhancement will take place when concentration 

(n) is between concentrations i.e. 𝑛𝑠𝑎𝑡 < 𝑛 < 𝑛∗. This is represented by MSZ, the metastable zone 

where growth of existing grains, absent nucleation, occurs.    Below 𝑛𝑠𝑎𝑡 nothing happens, 

concentration is insufficient for both grain growth and nucleation.  

The black line in Fig 3.12 represents the changing concentration, while orange line represents 

nucleation and grain growth. This model will be used for future explanations. The model describes 

that a minimum MAI concentration is required for nucleation to start and once it starts, MAI 

concentration decreases as the precursor is being used up for creating perovskite nucleation site 

followed by grain growth. But, as MAI pressure does not build effectively in petri-dish to sustain 

MAI flow, both nucleation and grain growth is incomplete in petri-dishes. 
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In addition, the petri-dish had lot of static charge, causing MAI to stick on the lid while closing 

the dish and these particles eventually fall onto the 𝑃𝑏𝐼2 coated films creating pin holes in the 

perovskite, hence shorting the device. Hence, we decided not to proceed further using petri-dish. 

The new material had to have the following properties:  

• Conductor (to avoid static build-up) 

•  Non-metal (as MAI etches metals-will be discussed)  

•  Heavy or screw able lid (to build vapor pressure) 

A material that satisfies all these requirements was high density Graphite. Fig 3.13 shows images 

of the graphite set up, and the films pre-and post-Perovskite formation. The films made using 

graphite was pin-hole free and very consistent, device results will be discussed in Chapter 4. 

 

Fig 3.13: Graphite set up & film 

The temperature for MAI vaporization in the glovebox was set at 1800𝐶 and duration was 3hrs 

(though the films form in ~2hrs) for grain enhancement purposes as per Ostwalds ripening [189, 

190]. Since large grains are thermodynamically more stable grow, if annealed for longer durations 
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the larger ones will grow at the expense of less stable smaller grains. The thicknesses of film 

formed ~350nm (for 𝑃𝑏𝐼2 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠~160𝑛𝑚).  

Also, the MAI temperature was ramped up in steps to form lesser nucleation sites i.e. instead of 

increasing the temperature rapidly to 1800𝐶, it was increased in steps of 100𝐶 starting from 1300𝐶 

to final temperature of 1800𝐶. Figure 3.14 shows image of rapid increase (left) and step increased 

(right) perovskite film, clearly step increased film has larger grains. This can be explained using 

the model of nucleation shown earlier in Fig 3.12, when concentration increases above 

𝑛∗nucleation starts, however if concentration increase above 𝑛∗ is not rapid, then the number of 

nucleation sites is reduced and the subsequent MAI flow goes towards grain enhancement.  

 

Fig 3.14: Grain size (NIP): Rapid increase (L) vs Step increase (R)  

3.1.1.5. Vacuum annealing   

Even though we were making high quality pin-hole free films, we were encountering other issues 

that was affecting device performances and required our attention. The main problem we were 

facing is that excess MAI is now being deposited on top of the film, this caused series resistance 

to increase and the fill factor we were getting was in the 0.48-0.52 range (Chapter 4 will discuss 

results), and if one observes Fig 3.13 and looks at the image of the 4 films, all films appear whitish 
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in the top, this is due to the excess MAI and it needs to removed. So, we founded this new technique 

to remove the excess MAI and termed it Vacuum annealing(VA). 

Vacuum Annealing is a simple technique which takes advantage of high vapor pressure of MAI 

[160, 191]. MAI has very high vapor pressure and any vacuum deposition system exposed to MAI, 

will outgas MAI till is scrubbed or cleaned with Isopropanol(IPA). For now, to just to get a feel of 

vapor pressure of MAI, let us look at vapor 𝑃𝑏𝐼2 films (Fig 3.14) that was evaporated in the co-

evaporation chamber (will be discussed in next section) before and after chamber clean-up, the 

film in left looks like perovskite though it was intended to be only 𝑃𝑏𝐼2. What happened during 

the run is that MAI in chamber outgassed and caused perovskite to form (at room temperature). 

But, the film on the right is yellow, since the chamber was scrubbed and cleaned with IPA. The 

whole point of showing the films (Fig 3.15) was to visually explain that MAI has high vapor 

pressure.  

 

Fig 3.15: 𝑃𝑏𝐼2 films Co-evaporator 

Since we knew that MAI has high vapor pressure, we came up with a new idea to take advantage 

of this property. So, we took the as the deposited Perovskite films and annealed at 1000𝐶 

(indicated temperature) for 1 hour in vacuum chamber that was specially built for this purpose. On 

doing so, the excess MAI from the film was detached, thus decreasing the series resistance and 

improving device performance. As it is difficult to capture the differences in the white-tinge at the 
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surface using a camera, we came up with an experiment to capture it. We put metal contact masks 

on the film and carried out the vacuum annealing procedure, the film appears different at the 

contact locations. Fig 3.15 shows the differences in film quality and one can visually observe that 

excess MAI is removed by our new technique. 

 

Fig 3.16: Vacuum Annealed films 

The vacuum annealing was done in a system which we refer to as the Small Bell Jar (SBJ). The 

system has a rotary pump and a turbo pump that pumps it down to ~ 4×10−6 𝑇𝑜𝑟𝑟, it has stage 

with heating capabilities powered by a Variac variable transformer. It is important to recognize 

that vacuum annealing is a technique for fine tuning performance and must be used appropriately. 

Fig 3.16, shows images of the film kept on the heating plate and the Vacuum anneal system.  

 

Fig 3.17: Vacuum Anneal set up 
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3.1.1.6. Sequential vapor limitations: FTO vs ITO  

If one looks up the literature of sequential vapor devices, one would notice that all devices made 

till date are on FTO, there is not a single device that is made on ITO and the reason is very 

intriguing. It is due to the acidic and etching nature of MAI. Before Dysol [192] sold MAI, all 

group including we made our own MAI. MAI is made from methylamine and hydroiodic acid [HI] 

[193], HI is very strong acid and etches anything that is metallic and there arises the fabrication 

dilemma. It also etches through some of sensor’s, pumps, value’s etc. and we will talk about in co-

evaporator section. Now if we consider, FTO (Fluorine doped Tin Oxide) and ITO (Indium doped 

Tin oxide), FTO is doped with fluorine, a halide dopant while ITO is doped with Indium, a 

transition metal. As explained earlier, when MAI is heated, it breaks up into methylamine and HI, 

and the HI attacks (etches) ITO.  On heating an ITO substrate in MAI ambient at 1500 𝐶, it 

resistivity changed from 10−4 Ω − 𝑐𝑚 before heating to 108 Ω − 𝑐𝑚 after heating. Fig 3.17 shows 

images of ITO substrates that were used for sequential vapor process, as one can see the substrate 

looks disoriented. 

 

Fig 3.18: ITO substrates attacked by MAI 
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Fig 3.19 is a supplementary image to show the reactivity of MAI. One of the vacuum systems that 

had exposure to MAI has a gold-plated electrode as part of its internal wiring. The MAI in the 

system in due course etched through the gold plating. The image also shows how the electrode 

(right) would have looked if not attacked. Hence, sequential vapor can only be performed on FTO 

substrate and this is of concern as for making PIN devices ITO is required, as it has better band 

matching (band diagrams on device architecture for PIN’s will be shown in Chapter 4 & 6).  

 

Fig 3.19: Gold plated electrodes etched my MAI(left) 

3.1.2. PIN sequential devices 

For PIN architecture, ITO is ideal for band matching, however ITO cannot be used for reasons 

explained above. FTO can be used if there is tunnel junction, i.e. the Type II heterojunction 

matched with FTO should be highly doped, else you won’t have an ohmic contact. 𝑁𝑖𝑂𝑥 is a good 

option for p-type Type II heterojunction and works well on FTO for solution devices, however it 

is attacked by MAI at higher temperature and patterns can be seen on the films when heated in 

MAI ambience as seen in Fig 3.20  
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~  

Fig 3.20: Nickel oxide based Sequential Vapor Perovskite. 

As, we ran out of options in the inorganic side, we decided to use Organic materials for making p-

type Type-II heterojunction. Though there are many organic materials with a valence band of ~5.3 

eV (Fig 1.16). Nevertheless, the organic material needs to be highly doped else it cannot make a 

tunnel junction with FTO. Pedot provides good band matching (~5.4 eV) and is highly doped, 

however studies have shown that Pedot starts degrading at temperature > 1500𝐶, and the rate of 

material change gets rapid as temperature increases[194, 195]. So, for PIN sequential vapor the 

growth temperature was dropped to 1500𝐶 and slow ramping approach (explained using the 

nucleation model in Fig 3.14) was used for grain enhancement. We also found that when P3HT 

was used as an interface layer, the device performance improved (results discussed in chapter 4).  

Others Polymers like PTAA, PCDTBT, Poly-TPD etc. were also tried however they could not 

withstand the high temperature. Hence, Pedot/P3HT was preferred for sequential PIN process. 

Fortunately, we evaporated 𝑃𝑏𝐼2, because solution 𝑃𝑏𝐼2 has wetting issues with all polymer 

transport layers (except Pedot) as one can see in Fig 3.21. Fig 3.21 show spin coated 𝑃𝑏𝐼2(left) on 

Pedot/P3HT and evaporated 𝑃𝑏𝐼2(right) on Pedot/P3HT, clearly spin coated 𝑃𝑏𝐼2 has wetting 

issues and does not stick. 
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Fig 3.21: 𝑃𝑏𝐼2 film on P3HT 

The difference in PIN processing conditions in comparison to NIP is that PIN was processed at 

lower temperature as polymers cannot take high temperature, also slower ramping was used. 

Otherwise, like in NIP sequential vapor, for PIN the 𝑃𝑏𝐼2 was evaporated, MAI processing was 

carried out using graphite in glovebox and post vacuum annealing was carried out. 

 

3.1.3. FAI sequential devices [NIP architecture] 

Finally, in the sequence of sequential vapor devices is Formamidinium Iodide (FAI) based 

Perovskite. FAI based perovskites requires a high temperature for phase transition and subsequent 

perovskite formation [22] and initial studies showed signs of thermal stability. Thermal 

degradation results for FAI and MAI perovskites will be discussed in chapter 5. However, 

fabricating FAI(NIP) devices in the glove box was not possible using MAI(NIP) conditions, 

because FAI has a higher a sublimation temperature in comparison to MAI. We conducted a TGS 

analysis on FAI and MAI, and the results are shown in Fig 3.22. 
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Fig 3.22: TGA analysis 

As one can see from Fig 3.22, FAI requires a higher temperature to sublime (~250𝐶 more), so our 

standard NIP(MAI) condition of 1800𝐶, does not provide sufficient FAI flow for nucleation to 

start (Fig 3.12 – Lamer Dinegar Model) or for the subsequent grain growth. On analyzing the TGA 

(Fig 3.22) data, we understand that at ~2300𝐶 FAI starts to decompose; hence the temperature 

was increased to a maximum of 2200𝐶 for FAI vapor process in the glovebox and started to see 

perovskite growth. Nonetheless, the films were incomplete and inconsistent like observed earlier 

in the petri-dish NIP (MAI) process. Fig 3.23 shows the FAI (NIP) that was grown in the glovebox, 

also the FAI perovskite had a characteristic reddish color to it as reported by other groups. 
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Fig 3.23: Incomplete FAI film (glove box) 

As growing FAI perovskite in the glove box was not likely, we found a new approach for growing 

FAI vapor perovskite. We carried the sequential FAI vapor process in vacuum conditions using 

SBJ (Fig 3.17), the system that was built for vacuum annealing. We know FAI has a lower vapor 

pressure at 760 Torr, but its vaporization will increase if pressure decreases. Hence, the graphite 

boat was heated in vacuum conditions for enhancing the FAI vapor process. Fig 3.24 shows the 

graphite boat in SBJ and the resulting film. (FAI results will be discussed in Chapter 4) 

 

Fig 3.24: FAI setup and resulting film 

After loading the graphite in SBJ, the system was pumped down to ~ 5×10−6 𝑇𝑜𝑟𝑟 to keep 

moisture low. Next, the gate valve is closed and 𝑁2 is flown into the chamber till pressure reaches 

1 Torr, following which the graphite is heated to an indicated temperature of ~2300𝐶. The chamber 
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was filled with 𝑁2 for consistency and better heat transfer, as one knows if chamber is in high 

vacuum then heat transfer will only be through radiation, thus filling with 𝑁2 will bring in 

convection. 

 

3.2. Co-Evaporation 

A lot of time and effort went into optimizing the process design of sequential vapor and in 

achieving high efficiency devices. Though, it was simple technique to implement, it has its 

limitations such as: 

1. Sequential MAI vaporization is more of a diffusion process than evaporation, hence there 

is going to be a stoichiometric variation in the film causing material properties to vary 

spatially. So, properties like diffusion length, lifetime etc. would be different than what it 

could have been i.e. if stoichiometry is ideal. 

2. A literature review shows that the fill factor for sequential vapor devices are in the ~0.55-

0.68 range, while solution devices have FF in the 0.8 range. One reason for the 

comparatively lower fill factor could be the extra MAI on the surface of these perovskite 

films that increases its series resistance. In diffusive processes the surface of the film will 

have higher concentration, so for attaining high FF co-evaporation might be the better 

technique. 

3. Sequential vapor works only on FTO substrates and for PIN architecture ITO is more apt. 

Unfortunately, sequential does not work on ITO substrates. 

4. Sequential works best on FTO/𝑇𝑖𝑂2, however 𝑇𝑖𝑂2 is intrinsic and has a lot of empty states 

that causes charge trapping (will be discussed in Chapter). To avoid charge trapping, 
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transport layers needs to doped but as far as we know other than FTO most other oxides 

are doped using metal dopants and they are attacked by MAI. 

5. Sequential does not allow the use of polymer as bottom transport layer or interfacial layers, 

since they cannot withstand high temperature. 

6. High open circuit voltage in hetero-structures solar cells necessitates using materials with 

proper band matching, and sequential vapor limits the use of materials that we can use. 

Hence for solving the problems related to charge trapping, low fill factor, and to achieve higher 

open circuit voltage, we move towards co-evaporation of precursors. Also, co-evaporation will 

help produce films with tunable stoichiometry (for example: 1:1 ratio of MAI:𝑃𝑏𝐼2). The co-

evaporator system was build bottom up. Though few groups have done co-evaporation[15, 55, 

153, 154, 158, 159], we are the only group to have successfully build a co-evaporator outside 

the glove box in ambient environment till date, and currently we have the highest efficient 

(17.4%) co-evaporated PIN perovskite solar. To counter the volatile and erratic nature several 

systematic modifications were made, however this section will go over the important changes 

and if others need to build a system, then these recommendations will be helpful and handy. 

3.2.1. Chamber parts 

The Co-evaporation chamber comprises of the following parts: - 

1. 3 furnaces (Radak-Luxel)  

2. 2 DC power supplies 

3. 2 Rotary pumps [Roughing & backing] with 𝑁2 purge (to prevent oil backstreaming) 

4. Turbo pump & Gate valve 

5. 2 Ion gauges [ one for Chamber and other to check leaks & functioning of Turbo) 

6. 2 Pirani gauges [ one for chamber and other for backing] 
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7. Two water cooled Trap (one for Turbo & second for Ion guage) 

8. Copper mesh filter to protect Turbo 

9. Variac transformer for heating substrate holder 

10. Thermocouple’s for measuring temperature of furnace’s and substrate holder. 

In addition, the chamber was encircled by blower motor (fans) for cooling the walls during the 

run and was also wrapped with heating pads for degassing MAI (post run). The chamber and 

all its parts were made using stainless steel. 

3.2.2. Chamber modifications 

The furnaces are mounted on the base plate at equidistance and accurate angles from the 

substrate holder. Fig 3.25 shows furnace installation (left) and the same post deposition(right). 

 

Fig 3.25: Luxel furnaces 

The first design of the system is shown in Figure 3.26.  
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Fig 3.26: First Design Co-evaporator.  

The original design of the system did not include traps or filters as we did not foresee the 

damage MAI could cause us and we lost about 2 gate-value’s, 3 Turbo pumps, 2 rotary pumps 

etc. As one can imagine not all parts fail together, it was one at a time so changes were made 

accordingly. Fig 3.27 shows images of one of the corroded gate valves. 

 

Fig 3.27: Corroded Parts-Gate valve 
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So, to protect the gate valve a water-cooled trap was introduced before the value and a picture 

of it is show in Fig 3.27.  

 

Fig 3.28: Water-cooled Trap 

The water-cooled trap is cleaned every week to remove MAI. We thought the trap was adequate 

for guarding the turbo pump from MAI, but it proved insufficient as the turbo was damaged. 

So, we introduced a copper filter in between the gate-valve and turbo to trap MAI. Fig 3.29 

(left) shows an image of the filter included in the system design, also an ion gauge is directly 

attached above the turbo pump to monitor its operation and will serve as an indicator when to 

change the filter. Fig 3.29 (right) shows image of a filter that was included in SBJ, as you can 

see MAI will also attack the copper mesh and the filter needs to be periodically replaced for 

system maintenance. 

 

Fig 3.29: Filter 



www.manaraa.com

82 

 

3.2.3. Sensors in chamber. 

Before we go into the sensors used, an understanding of sensors and its importance for film 

deposition is critical. The most common way of measuring thicknesses of film is using Quartz 

crystal thickness monitor (QCM), it uses density and acoustic impedance of the deposited film to 

eventually calculate it thickness by detecting the change in resonance frequency of quartz crystal. 

However, if the QCM is taken apart, one will notice that it has gold plated electrodes for delivering 

electrical signals and these electrodes are etched by MAI. Hence, the QCM is unreliable for MAI 

related systems. 

However, for material like perovskite whose carrier collection is field assisted[171], the thickness 

of film is critical, as it determines carrier collection. Since, QCM doesn’t work, an alternative 

approach is doing calibration runs, knowing rate and depositing for 300nm. However, even for this 

method the precursor’s rate need to be individually monitored and since we are forming a 

compound, their individual rates need to be precise. 

𝑃𝑏𝐼2 rate is monitored primarily using the furnace temperature, the secondary check for it is the 

DC power to the furnace. Next is MAI, but since it has high vapor pressure and outgasses a lot, it 

is difficult to in control it using furnace temperature. However, its high vapor pressure makes it 

omnipresent and as we are forming a compound by chemical reaction on the substrate surface, so 

we just need to set a constant MAI pressure during deposition. hence MAI can be monitored using 

Ion-gauge. Fig 3.30(left) shows an image of trap fitted ion-gauge used to measure MAI pressure. 
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Fig3.30: Trap fitted Ion gauge 

The ion gauge filament is made from iridium metal, which can be strongly degraded by organic 

contaminant, thus giving false readings. Though, we cannot isolate it from MAI we can still 

prolong its lifetime by have a water-cooled trap to lessen the influence of MAI. However, MAI 

still makes it through and we change the Ion gauge as soon as we see the white coating as seen in 

Fig 3.30 (right), else we are reading incorrect value. We use up ~3 ion gauges per week for 

functioning of the system.  

3.2.4. System maintenance  

MAI is hygroscopic material and absorbs moisture. As we know, higher the moisture content in a 

vacuum system the more difficult it is to bring the pressure down, hence every week the chamber 

walls are scrubbed and cleaned with Isopropanol, followed by bake-out for a day to drive away all 

the solvents. All the traps are also cleaned weekly to remove MAI and on doing so, we will prolong 

the life of gate-valve and turbo pump. In Fig 3.30 we can see of chamber strapped with heating 

pad to help in bake out.  

3.2.5. Film deposition  

Initially the films grown using co-evaporation had high series resistance. However, we knew from 

the sequential experience that it was from MAI. The base pressure before we ramp up the furnace 
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is ~9×10−6𝑇𝑜𝑟𝑟 and the shutter for film depostion is open only when the MAI pressure reaches 

9×10−5 𝑇𝑜𝑟𝑟 and this takes about ~ 1hr.  Still, MAI will deposit on the substrate even if the shutter 

is closed as it does not follow line of sight deposition. Thereby, increasing the series resistance 

and creating erratic behavior.  

To counter the problem of MAI depositing on substrate, 10 nm of pre-𝑃𝑏𝐼2 is deposited on the 

substrate i.e. even before MAI temperature is increased. Since, MAI is very reactive in vacuum, 

the initial vapors of MAI will react with the pre-𝑃𝑏𝐼2, forming perovskite while the chamber is 

being ramped up to achieve required MAI pressure. The chamber must be ramped to the required 

pressure no later than ~60-70min. The co-evaporated devices were grown on PIN & NIP 

architecture, the structure and results will be discussed in chapter 6. 

The best results for room temperature deposition are follows: - 

MAI chamber pressures: 9×10−5 𝑇𝑜𝑟𝑟 

𝑃𝑏𝐼2 temp: 3150𝐶 

Run time: 75 mins 

Thickness ~300nm 

Growth rate (Perovskite)~ 0.67 A/s 

Also, a spacer (Fig 3.30) was inserted in between the substrate holder and chamber to increase the 

distance between the substrate and furnace, thereby minimizing the thickness variation across 

sample. In addition, perovskites were also grown at substrate temperature of 500𝐶 & 750𝐶, the 

growth conditions of the same and results will be discussed in Chapter 6.  
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CHAPTER 4 

METHYL AMMONIUM IODIDE PEROVSKITES 

 

4.1. NIP Sequential Devices 

The band structure of NIP(MAI) device is shown in Fig 4.1. 

 

Fig 4.1: NIP sequential architecture 

The NIP architecture was slightly altered from previous NIP vapor architecture’s. We were the 

first group to use un-doped P3HT as Hole Transport layer (HTL) to fabricate high efficiency 

(13.7%) NIP devices [181], the polymer used most commonly at the time of our work was Spiro-

meotad[14, 15]. P3HT doped with Lithium had been reported prior to our work [196] with 

efficiency of ~10% but we wanted to stay away from mobile dopants (the reason will become 

obvious by the end of this chapter).  

Even though our work was on sequential vapor process, we made hybrid devices [ i.e. 𝑃𝑏𝐼2 

(solution) & MAI (Vapor)] before making Sequential vapor devices. The IV [Fig 4.2] and 

Quantum efficiency [Fig 4.3] of our best hybrid device is shown in figures below. The cell had an 

efficiency of 12.3% with a 𝐽𝑠𝑐 = 20.1𝑚𝐴/𝑐𝑚2, 𝑉𝑜𝑐 = 0.93𝑉 and Fill factor=0.65. 
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Fig 4.2: IV Hybrid NIP 

 

 

Fig 4.3: QE Hybrid NIP 

The results of our hybrid device is comparable to the work done by Yang Yang [172] whose 

efficiency was 12.1%, however Yang Yang had used Spiro while we used the inexpensive P3HT. 

Still, the hybrid approach had disadvantages, the morphology of spin coated 𝑃𝑏𝐼2 varied from 

sample to sample [Fig 3.5], resulting in differences in Perovskite grain size [Fig 3.6].  Hence, we 
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moved towards sequential vapor and used a high-density graphite boat. The 𝑃𝑏𝐼2 morphology was 

consistent [Fig 3.7], and thru grain enhancement [Fig 3.14] and vacuum annealing [Fig 3.17] we 

made high efficiency NIP devices [181]. The IV & QE of the device is shown in Fig 4.4 and SEM 

image & XRD peaks are shown in Fig 4.5. XRD shows that  𝑃𝑏𝐼2 has completely changed into 

perovskite and SEM shows that the film has an average grain size of ~ 1um. 

  

Fig 4.4: IV & QE Sequential NIP vapor [181] 

 

Fig 4.5: SEM & XRD of NIP vapor film [181] 

The best device had an efficiency of 13.7% with a 𝐽𝑠𝑐 = 21.8𝑚𝐴/𝑐𝑚2, 𝑉𝑜𝑐 = 0.96𝑉 and Fill 

factor=0.65. The device parameters such as short circuit current, open Circuit Voltage, fill factor 

and efficiency are very consistent for successive devices fabricated via the Sequential vapor 
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approach and the histogram (Fig 4.6) and summary of 28 devices shown below (Fig 4.7) represents 

the same. 

 

Fig 4.6: Histogram [181] 

 

Fig 4.7: Summary of results [181] 

The summary made known are the results of 5 consecutive devices, each having 6 contacts. The 

mean efficiency= 12.2%, mean Current= 21.8𝑚𝐴/𝑐𝑚2, mean Fill factor= 0.58 and mean Open 

circuit voltage~ 0.98 V, with some contacts have voltage of up to 1 Volt. The previous highest 

open circuit voltage that had been reported using P3HT as HTL for Perovskite solar cells was 

0.92V [196], and the reason we believe for us to have achieved significantly higher open circuit (1 
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Volt)  is that the bulk perovskite layer is vapor made and devoid of solvents, hence minimalizing 

shunt paths. 

Another important optimization study done was the thickness variation of P3HT. We discovered 

that the thickness of the P3HT layer was a critical parameter that determined the fill factor. The 

reason being P3HT has high resistivity (∼10−4 Ω cm). This means that the resistance of the layer 

and space charge limited current becomes a factor in determining the fill factor i.e. if the thickness 

is too high. If the thickness is too low, then the entire layer is depleted, and then, the work function 

of the electrode plays a role in determining the voltage. Fig 4.8 shows the device performance as 

a function of thickness. 

 

Fig 4.8: P3HT concentration study 

From the above table, we can see how a very thin P3HT layer leads to a loss in voltage, whereas a 

too thick layer leads to a loss due to increasing series resistance. Note how the series resistance for 

the two thicker P3HT films scales with the thickness of the film. For the thinnest film, since the 

film is totally depleted, as indicated by the precipitous voltage drop, the current is carried by space 

charge limited current, and the linear scaling factor does not apply. The best device performance 

was obtained with the intermediate thickness of the P3HT film. The thicknesses were measured 

using a surface profilometer. 

Despite having good and consistent device parameters, the above fabrication process and chosen 

transport layers (Type II Heterojunction) creates anomalies in device behavior (Hysteresis and 

Voltage evolution- Data is shown in Fig 4.11 & 4.12 & also explained). Hysteresis in IV is a device 



www.manaraa.com

90 

 

behavior where the device exhibits different device performance depending on direction of voltage 

scan, this behavior influences all performance parameters (fill factor, voltage, current and 

efficiency). The other anomaly of concern is voltage evolution, the open circuit voltage and fill 

factor increases with time when device is measured under open circuit condition (or by applying a 

forward bias), subsequently changing the device characteristics. The reasons for these anomalies 

and the necessary fabrication modification and preferred device architecture essential to lessen this 

effect will be discussed.  

4.1.1.  Anomalies from carrier trapping and mobile Ions. 

The phenomenon of IV hysteresis has been reported by numerous groups working on Perovskite 

solar cells. Based on literature, hysteresis in IV is dependent on sweep direction [197] , sweep rate 

[198], pre-biasing [198] and starting scanning voltage [199]. However, there are groups who have 

not observed any hysteresis, mostly all groups working on PIN architecture do not observe any 

hysteresis [200], also studies have shown that increase in grain size decreases the  hysteresis in IV 

[201]. Hysteresis in IV has been observed typically in NIP architecture that uses 𝑇𝑖𝑂2, however 

groups have shown that when 𝑇𝑖𝑂2 is coated with PCBM [202, 203]or replaced by C60 hysteresis 

almost vanishes [204].  

On observing the data from our own group (we work on both NIP & PIN, also we work with 

different transport layers for each architecture) and literature data, a clear similarity in data arose 

in devices that have hysteresis, reduced hysteresis and no-hysteresis. We see that devices that use 

doped transport layer have no hysteresis, while devices that possess larger grains have reduced 

hysteresis. However, devices that use un-doped transport layers’ like 𝑇𝑖𝑂2, 𝐴𝑙2𝑂3 etc. have 

significant hysteresis.  
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Hysteresis is observed commonly in NIP structure that explicitly use 𝑇𝑖𝑂2 [205-208] but is absent 

in NIP[209] & PIN architecture[155, 200, 210, 211] using doped transport layers indicating the 

presence of interface states in un-doped 𝑇𝑖𝑂2 that might be acting as potential trap states for 

charged carriers. These trapped carriers (electrons & holes) could bring about a change in the 

internal electric field of the bulk material, thus causing hysteresis. Though hysteresis can be 

explained by the charge trapping phenomena for our results and majority of the literature data, 

results also indicate an added mechanism. 

For example, an interface layer of PCBM on 𝑇𝑖𝑂2 reduces hysteresis [202, 203], thus supporting 

charge trapping in 𝑇𝑖𝑂2, also replacing 𝑇𝑖𝑂2 with C60 reduces hysteresis [204] but doesn’t 

eliminate it, despite C60 being doped. Likewise, the results of grain size enhancement decreasing 

hysteresis [201] indicate an second phenomena. The above explained and the results of poling 

effect, where PIP devices [212-215] with no charge selective contacts displaying photovoltaic 

behavior on exposure to light indicates excess mobile ions in the bulk that accumulate at the 

material interface, hence reducing the internal field. A detailed study of ion migration and it 

influence on electrical characteristic is shown by Joshi et al[28, 91, 216]. 

4.1.2. Source of ions 

The subject of hysteresis and its origin brought about quite a debate, some groups claimed it was 

due to ferroelectric effect, while others claiming it was due to Ion migration throughout the bulk. 

But the results of Leijtens et al [214], revealed field-induced poling is significant at room temperature 

and decreased at lower temperatures and this is contrary to the ferroelectric nature; as ferroelectric 

behavior is anticipated to increase at lower temperatures when thermal disorder is lesser.  

Even before the advent of Perovskites in photovoltaics, ionic conductivity studies on halide 

perovskites have reported low activation energy for ionic conduction[217-219]. Numerous studies 
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were once again carried out on perovskite and like earlier, they also reported low activation energy 

for ion conduction. A summary of activation energy (𝐸𝑎) calculated for 𝐶𝐻3𝑁𝐻3𝑃𝑏𝐼3 perovskite 

by different groups [28] is given below.  

𝐼−[ 𝐸𝑎(𝑒𝑉)] 𝐶𝐻3𝑁𝐻3
+

[ 𝐸𝑎(𝑒𝑉)] 𝑃𝑏2+[ 𝐸𝑎(𝑒𝑉)] Reference 

0.08 0.46 0.80 [220] 

0.28 0.7 1.39 [221] 

0.32 

 

0.57 - [222] 

0.58 0.84 2.31 [223] 

 

As one can see there are differences in the reported values of activation energy, it is possible that 

these discrepancies could be a result of different theoretical assumptions made during calculations. 

Interstitial migration is seldom considered as mode of ion motion in halide perovskites due to lack 

of spacing [223]. Commonly, all reports consider vacancy mediated migration as the dominant ion 

transfer mechanism. Walsh et al[224] calculated the activation energy for Schottky defect in 

perovskite is 140 meV that corresponds to ~1019 vacancies at room temperature.  

Also, from the reported values of activation energies, 𝐼− has the lowest activation energy and is 

the ion that associated with migration via vacancies in the structure. Also, based on activation 

energies, it is probable that 𝐶𝐻3𝑁𝐻3
+

can also migrate[225]. However, the activation energy of 

𝑃𝑏2+ vacancies is relatively high and is improbable for ionic motion. The calculations above only 

consider vacancies as mean of ion transport, however experimental results suggest there are other 

pathways for ionic motion. For example dependence on hysteresis [201] and field induced poling 

[213] on grain size suggest that grain boundaries are also effective pathways for ion motion. A 

schematic of the different ion motion pathways is shown in Fig 4.9.  
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Fig 4.9: Ionic motion pathways [226] 

4.1.3.  Influence of ionic motion on device performance 

The above briefing on conditions when hysteresis is observed (scanning direction, rate etc.), the 

cause of hysteresis (carrier trapping in un-doped transport layers & excess ions in bulk), ions 

responsible for hysteresis (𝐼−, 𝐶𝐻3𝑁𝐻3
+

), ionic pathways etc. was to help understand the IV 

hysteresis and Voltage evolution. Let us consider Fig 4.10, to better understand how trapped 

charges and excess ions influence the device performance in NIP architecture with un-doped 

transport layers.  

As explained in Chapter 2 (Page 39), an internal electric field is created in the bulk of the material 

if there is difference in work function or electron affinity in between the electron and hole transport 

layers. The NIP structure is bandgap engineered using selective Type-II heterojunction to collect 

electron and holes using an internal field as can be seen in Fig 4.12, hence the internal field is not 

only felt by carriers (electrons/holes) but also by the ions in the bulk. From table above (section 

4.1.3-Page 95), we know that the activation energy required to break bonds and create mobile ions 

is relatively low in perovskite.  
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Hence, negative ions (𝐼−) are driven to the N type interface (𝑇𝑖𝑂2) and positive ions (𝐶𝐻3𝑁𝐻3
+) 

are driven to the p-type interface (P3HT). The mobility of the moveable ions depends on both 

available pathways and on diffusion coefficient of individual ions. It is important to realize that 

ions unlike electrons/holes migrate via grain boundaries and vacancies (Fig 4.9). Owing to the low 

activation energy of ions, just the internal electric field in the bulk can create ions (𝐼− & 𝐶𝐻3𝑁𝐻3
+) 

and any non-stoichiometry, for example excess MAI in the bulk (as in the case of sequential vapor 

devices), can contribute to additional ions being generated, this would lead to further accumulation 

of ions at the interface that would oppose the internal field. 

 Further, in polycrystalline material we have grain boundaries, that primarily serve as pathways 

for ion migration but they can also be a source of ions, since grain boundaries imply broken bonds. 

The ions from bulk and grain boundaries continue to accumulate at the interface till the electric 

field forces are balanced by the opposing diffusive force. 

 

Fig 4.10: Ion Trapping in NIP architecture 
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The ions accumulating at the interface, reduces the internal electric field (𝑉𝑂𝐶 dependent of field) 

and built-in-voltage, thereby reducing the Open circuit voltage and carrier collection. Carrier 

collection, because perovskite is a field controlled device as experimentally shown by Dalal et al 

[171]. In addition, there is a decrease in collected carriers due to the increased recombination in 

the bulk owing to the broken bonds that arises owing to the ions migrating from the bulk to the 

interface, thus increasing 𝐼0 and reducing the 𝑉𝑂𝐶. This is the explanation behind the phenomena 

of both voltage evolution (Fig 4.11) and IV hysteresis (Fig 4.13) that will be seen in detail. 

First, the results of voltage evolution (Fig 4.11) is explained. The device is light exposed under 

open circuit conditions and IV is scanned at 0mins, 2mins, 5mins, 10mins, 15mins and 20 mins in 

the reverse direction (i.e. form high bias to low bias). The results clearly show an increase in 

voltage and fill factor with increasing light exposure. The ions collecting at the interface opposes 

the internal field of the bulk decreasing the built-in-voltage and thereby, the open circuit voltage 

(𝑉𝑂𝐶). So, at 0mins, we have decreased 𝑉𝑂𝐶 and reduced carrier collection. Also, the relative 

number of broken bonds in the bulk is at its maximum at 0mins, causing added recombination that 

further decreases both carrier collection (fill factor) and 𝑉𝑂𝐶. 
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Fig 4.11: Voltage evolution 

In the voltage evolution study, the device is light exposed under open circuit condition (forward 

bias (𝑜𝑟 𝑉𝑂𝐶)). In forward bias (𝑉𝑂𝐶) condition the internal field is reduced, changing the balance 

of the forces experienced by the ions i.e. electric field forces causing the ions to migrate to the 

interface decreases and diffusive forces that initiates the ions migration back to the bulk increases. 

Thus, ions diffuse back to the bulk till an equilibrium between field and diffusive force is re-

established. Hence, the forward bias (𝑉𝑂𝐶) causes ions to migrate back to the bulk resulting in an 

increase in 𝑉𝑂𝐶(forward bias), the increase in 𝑉𝑂𝐶 is accompanied by additional diffusion of ions 

to the bulk further increasing the 𝑉𝑂𝐶 and so on. Therefore, as we measure at different times we 

continue to observe an increase in 𝑉𝑂𝐶 (Fig 4.11,  𝑉𝑂𝐶 increases from 0.79V to 0.92V).  

When ions migrate to the interface, it creates broken bonds i.e. deep states (recombination centers) 

in the bulk, creating a collection problem. Hence, at 0mins the fill factor is reduced. In open circuit 

condition (forward bias), the ions diffuse back into to the bulk, the ions that migrate back in the 
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bulk might reform the bonds it broke, thus reducing the deep states and thereby increasing carrier 

collection (fill factor). An increase in fill factor is clearly seen with increasing exposure time in 

open circuit conditions from the voltage evolution curves in Fig 4.11, the 𝑓𝑖𝑙𝑙 𝑓𝑎𝑐𝑡𝑜𝑟 increases 

from 0.37 to 0.58.  

Ions generated due to the internal field migrates to the interface. The ion generation and migration 

will continue until the internal field forces and diffusive forces of ion cancel one another. 

Consequently, when the device is under forward bias, the internal field declines resulting in an 

unbalance of the counter acting forces. Hence, the ions accumulated at the interface diffuse back 

to the bulk. However, not all accumulated ions can diffuse back to the bulk, owing to the always 

existing internal field, so some ions will diffuse back but only till the opposing forces balance out. 

For the above reason, the true 𝑉𝑂𝐶 might never ever be achieved.  

This re-emphasis the importance of doped transport layers, as un-doped or intrinsic transport layer 

will have empty states, that might trap ions and decrease the 𝑉𝑂𝐶. Also, depending on the energy 

level of the trap states, increasing voltage (energy) might be required for releasing the trapped ions. 

This implies slower voltage evolution, as a longer time is taken for ions to diffuse back to the bulk 

and for the 𝑉𝑂𝐶 to build up. The biasing voltage required for diffusing the ions back to the bulk 

depends on ion density (source of ions i.e. MAI content and grain boundaries), pathways for ion 

to migrate (grain boundaries) and trapping of ions at interface (undoped transport layers). Hence, 

it is both device architecture and processing dependent. 

The S shape or double diode characteristic at 0mins can also be explained from visualization of 

the band diagram in Fig 4.10. The band diagram is drawn basing perovskite as a n-type material, 

we know that perovskite is an n-type type material from the CV data of Samiee et al [50] measured 

on NIP device [Fig 4.12 (left)] and P. Joshi[28] measured on PIN device [Fig 4.12 (right)], in both 
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devices independent of the architecture, the capacitance depletes at negative bias, therefore we can 

conclusively say it is n-type material. 

 

Fig 4.12: CV: NIP(left) and PIN(right) [28, 50] 

Since Perovskite in an n-type material and 𝑇𝑖𝑂2 is undoped, a barrier for electrons that current 

from perovskite to 𝑇𝑖𝑂2 interface will form as can be seen from the band diagram in Fig 4.10, 

electron can hurdle across the barrier thermally or tunnel through it. The tunneling current (𝐽𝑇) can 

be given by the following equation: 

𝐽𝑇 ∝ 𝑒𝑥𝑝 (
−𝑒𝜑𝐵𝑁

𝐸
) 

𝜑𝐵𝑁 is the barrier height and 𝐸 is the electric field. At 0mins, the ions are accumulated at 𝑇𝑖𝑂2 

interface, causing the internal field to decrease, thus diminishing the tunneling probability across 

the barrier, under this circumstance if the electron does not have the necessary thermal energy to 

hurdle across, then there would be an electron accumulation at the barrier. However, under forward 

bias, the ions diffuse to the bulk and the relative electric field and tunneling probability increases, 

thus causing the electrons to tunnel through. At 0mins, we see a double diode or S shaped curve 

but as the ions are repelled, the built-in field increases resulting in carriers being tunneled across 

the barrier and the S shape disappears. 
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For explaining IV hysteresis (Fig 4.13), the terms ‘Reverse scan’ and ‘Forward scan’ is going to 

be used repeatedly. As explained earlier in Chapter 2 (Page 47) section 2.7.4, the IV is typically 

scanned from high bias to low bias, this we term as Reverse scan. In the contrary, scanning from 

low bias to high bias is referred to as Forward scan. In the voltage evolution study (Fig 4.11) on 

continued exposure of the contact in open circuit condition, post 15mins we experimentally 

realized that there is not any further significant increase in 𝑉𝑂𝐶 indicating that the ions have attained 

a local equilibrium. Hence, the final IV measurement is scanned at 20mins as follows: IV is 

scanned in reverse direction followed by immediately scanning it in forward direction. 

  In the final reverse scan (Fig 4.13), the device prior to scanning is light exposed under open circuit 

(𝑉𝑂𝐶) i.e. forward bias condition, so most ions would have diffused back to the bulk and re-bonded 

with the broken bonds reducing deep states, and reverse saturation current and increasing the 

electric field. Thus, the device has its maximum 𝑉𝑂𝐶 and fill factor. Following the reverse scan, 

we instantaneously scan in the forward direction i.e. from low bias to high bias. The scan is started 

from -0.1V to 15% above 𝑉𝑂𝐶, at -0.1V due to maximum electric field in the bulk, all carriers are 

collected.  

Nevertheless, the ions will also experience this field and migrate to the interface. This results in 

broken bonds in the bulk that will increase the recombination [𝐼𝑂], resulting in decrease of 𝑉𝑂𝐶 and 

fill factor and the following is clearly seen from the results (Fig 4.13). This phenomenon of change 

of change in Fill factor and 𝑉𝑂𝐶 based on scanning direction is referred to as IV hysteresis. The 

results in Fig 4.13, shows the difference in 𝑉𝑂𝐶 (0.95V to 0.91V), Fill factor (0.61 to 0.50) and 

resulting efficiency change (11.6% to 9.2%), just by changing scanning direction.  
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Fig 4.13: IV hysteresis 

4.1.4. Reducing voltage evolution 

Voltage evolution and hysteresis are both due to ions accumulating at the interface, so if ion motion 

to the interface is eliminated, then there would be no voltage evolution or hysteresis. The factors 

that control voltage evolution and hysteresis are grain size, ion density and doping of transport 

layers (𝑇𝑖𝑂2 & 𝑃3𝐻𝑇). Large grains decrease the possible pathways for ion motions, perfect 

stoichiometric or apt precursor (MAI) concentration reduces the generated ion density in the bulk 

and doped transport layers prevents charge trapping at the interface. 

The dopants for transport layers needs to be immobile, else the dopants themselves can contribute 

to ion accumulation at the interface. A good example for mobile dopants is Lithium which is 

commonly used in organic transport layers like Spiro-meotad and this could possibly worsen both 

hysteresis & voltage evolution effects. Even though doped metal oxides should theoretically work 

perfectly, it cannot be used as metal rich interface layers are attacked by MAI. As per literature 
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𝑇𝑖𝑂2 can be doped using metal dopants[227] but we cannot take that route as it is not suitable for 

vapor process for the reason just mentioned.  

The doped transport layers’ route for minimizing device irregularities isn’t too promising, hence 

for solving anomalies, we tried to minimize the ion density and increase grain size. The ion density 

can be controlled by varying the MAI concentration in the film, as MAI is the source of ions. This 

can be accomplished by decreasing the MAI diffusion (reaction) time and by reducing the quantity 

of MAI used in the graphite boat. So, the first experiment was to lessen the MAI diffusion time. 

The standard recipe for MAI diffusion (explained in chapter 3 in detail) is spread 40 mg of MAI 

around substrate, ramp temperature of graphite starting from 1300𝐶 to 1800𝐶 in 10 minutes’ 

interval, and set graphite to a final temperature of 1800𝐶 for 3hrs.  

In the constant source (MAI) diffusion model, the distribution of source is given by complimentary 

error function, 

𝑛(𝑥, 𝑡) = 𝑛𝑂𝑒𝑟𝑓𝑐 (
𝑥

2√𝐷𝑡
) 

𝑛𝑂 is the concentration at surface, 𝐷 is the diffusivity of MAI, x is the distance along the film and 

t is the time (√𝐷𝑡 is the diffusion length of MAI). Diffusion has an exponential relation with 

temperature, and varying temperature is a better way to control concentration in the bulk. However, 

we chose not to take that path, as large grains were critical for device performance and from past 

experimentations we know that decreasing temperature decreases grain size. Hence, the 

approaches taken to decrease concentration in the bulk are: - 

• Decrease MAI diffusion time  

• Decrease MAI amount  

4.1.4.1. Decrease diffusion time 
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By lessening the MAI distribution in the bulk, we will decrease the density of mobile ions 

generated in the bulk, thus controlling the ions accumulating at the interface. From constant source 

diffusion model, MAI concentration in the bulk is a function of diffusion time, so by decreasing 

diffusion duration we can reduce the concentration of MAI and thereby, the generated mobile ions 

that would eventually collect at the interface. The standard condition is 3 hours, so we decided to 

reduce the diffusion time to 2 Hours and 1.5 hours. 

The consequence of shortening the diffusion time is that perovskite film can be incompletely 

formed, also by reducing the time we are not assisting grain enhancement. Though an improvement 

in voltage evolution is sort after, decreasing time would also decrease grain size. Grain size 

influences both diffusion length and recombination current, thus affecting both carrier collection 

(fill factor) and 𝑉𝑂𝐶.  

Smaller grains increase the ionic pathways, leading to a greater number of ions accumulating at 

the interface. Correspondingly, smaller grains imply larger number of broken bonds that could 

eventually contribute to additional free ions. So, using this approach, we know a compromise had 

to be made between grain size and final MAI concentration in the bulk. Fig 4.14 shows the voltage 

evolution curve and Fig 4.15 shows the corresponding device parameter comparisons for diffusion 

time study. 
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Fig 4.14: IV Diffusion time study 

The results from Figure 4.14 shows that by reducing the diffusion time, the voltage evolution effect 

improves because we are reducing the MAI concentration in the bulk, thus lessening ion 

accumulation at interface. From the voltage evolution curves in Fig 4.14, we can observe that 

180C/ 3hr as a S curve, which is absent for 180C/2hr and 180C/90mins indicating reduced ion 

accumulation at the interface for the decreased diffusion durations. As explained earlier, greater 

ion accumulation at interface, lesser the in-built electric field, there decreasing the tunneling 

probability of carriers across the barrier (Fig 4.10).  
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Fig 4.15: Device parameters voltage evolution study 

Also, from Fig 4.15 we can see that for 180C/3Hr condition, the 𝑉𝑂𝐶 onsets at a lower voltage of 

0.71V at 0mins and increases to a maximum 0.93V in 15mins, while for 180C/2Hr the 𝑉𝑂𝐶 starts 

at a higher voltage of 0.86V at 0mins and increases to a maximum 0.94V in just10mins, signifying 

lesser ion density at interface for 180C/2Hr. A similar faster rise is also seen for 180C/90mins, but 

its current is slightly lower in comparison to 180C/3hour and 180C/2hour indicating incomplete 

film formation and smaller grain size. The QE and SEM images will help confirm the same. Figure 

4.16 & 4.17 shows the QE and SEM comparison for the respective conditions. 
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Fig 4.16: QE diffusion time study 

The QE (Fig 4.16) and SEM images (Fig 4.17) agrees with each other, the QE current decreases 

with decrease in diffusion time. Also, there is a drop-in QE in the longer wavelength for the 90mins 

diffusion time condition indicating incompletely formed perovskite and looking at the SEM 

images, 90mins deposition has a larger distribution of smaller grains. The grain size distribution 

increases as we move towards longer diffusion times, due to grain enhancement that occurs with 

longer reaction time and this is reflected in the current too. Even though, 180C/180mins possesses 

larger grains and has higher current, the ion density is also greater due to the excess MAI in the 

surface and bulk. However, 180C/2hr’s current and grain size distribution isn’t too dissimilar from 

180C/3Hr, but it has significantly better voltage evolution, so for that reason for the future study, 

we used 180C/2Hours as our apt condition. 
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Fig 4.17: SEM diffusion time study 

4.1.4.2. Reduce MAI amount 

Like previous study, the goal of this study is to reduce the ion density at interface but by decreasing 

the quantity of MAI used in the graphite boat. From constant source diffusion model, by decreasing 

the constant source of MAI at the surface 𝑛𝑂, it is possible to decrease the amount of MAI in the 

surface and bulk. The earlier study used 40mg of MAI, so we decided to study the variation in 

voltage evolution by using 20mg, 30mg and 60mg for the 180C/2hr diffusion condition. Also, 

from Lamer-Dinegar model (page 66), an increase in grain size is probable, i.e. if concentration 

increase above 𝑛∗ (nucleation concentration) is not rapid, then the number of nucleation sites is 

reduced and the subsequent MAI flow goes towards grain enhancement. The IV results of the 

decreased MAI amount-Voltage evolution study is shown in Fig 4.18 and the corresponding device 

parameters are shown in Fig 4.19. 

The results of the study show that by decreasing MAI amount, the voltage evolution decreases (Fig 

4.19). For the 60mg case, we see a S shaped curve that is absent for 40mg, 30mg and 20mg case, 

indicating that 60mg has a larger accumulation of ion at the interface. The voltage evolution trend 

for the 40mg, 30mg and 20mg are hard to differentiate and voltage saturates in ~10mins (Fig 4.18 

& 4.19). Nevertheless, the 20 mg has better current. The higher current for 20mg case corresponds 

to its larger distribution of grain size (Fig 4.20). The larger grain distribution for the 20mg case 
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can be explained using the Lamer-Dinegar model (Page 66), the MAI vapor concentration for the 

20mg case is less than the 30mg case. Hence, the concentration does not exceed too much above 

the minimum nucleation concentration (𝑛∗), thereby reducing the number of nucleation site, also 

the future MAI concentration made available goes towards grain enhancement rather than towards 

creating newer nucleation sites. Consequently, when the grain grows it achieves large size, as it is 

unrestricted by the surrounding smaller grains that would have formed if new nucleation sites were 

created. 

 

Fig 4.18: IV MAI amount study 
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Fig 4.19: Voltage evolution MAI amount study 

Fig 2.20 shows that 20mg has a larger grain distribution in comparison to 30mg case. Also, the 

QE current as shown in Fig 2.21 agrees with the SEM data, the QE current for 20mg is ~1𝑚𝐴/𝑐𝑚2 

higher than the 30mg case due to its larger grains. 

 

Fig 4.20: SEM: 20mg vs 30mg  
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Fig 4.21: QE: 20mg vs 30mg  

Even though voltage evolution showed improvement by decreasing diffusion time and MAI 

quantity, it is important to understand that MAI concentration is going to follow a erfc function 

across the film thickness, therefore there is always going to excess ions in the surface of the film. 

In addition, 𝑇𝑖𝑂2 is un-doped transport layer and suffers charge trapping that worsens the voltage 

evolution and hysteresis phenomenon. Fig 4.22 shows the hysteresis curve for the 20mg-2Hr 

diffusion condition and clearly the device has hysteresis. The hysteresis is due to the charge 

trapping in the transport layers.  

The hysteresis IV measurements are taken by scanning a reverse scan followed by an immediate 

forward scan. We must understand that post reverse scan and pre-forward scan, the device is under 

short circuit condition (maximum electric field), hence ions along with carriers will be attracted 

back to the interface. However, as the forward scan is taken, the device’s forward bias gradually 

increases, thus deflecting ions back to the bulk. However, if the transport layers are un-doped, the 

device will experience charge trapping and this decreases both fill factor and 𝑉𝑂𝐶 especially when 

the device is forward scanned. 
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Fig 4.22: 20mg MAI-2 Hour diffusion IV Hysteresis  

4.1.4.3. Voltage soaking  

Until now all IV measurements were carried out by exposing the device to light exposed under 

open circuit conditions i.e. the devices were all forward biased with the open circuit voltage before 

scanning and the applied bias helped deflected the ions back to the bulk. However, the applied 

forward bias is inconsistent and totally device dependent i.e. if the device has larger accumulation 

of ions at the interface, the 𝑉𝑂𝐶 build up is slow, as seen earlier from the results of the Voltage 

Evolution study and it may take a longer time to deflect the ions from the interface. 

So, a better approach to the do the same is to give a constant forward bias of 1 V while keeping 

the device in dark. On doing so, the device performed much better because a fixed bias of 1V is 

applied for a 10-15mins to deflect the ions, in contrast to the changing 𝑉𝑂𝐶 that’s build up with 

time. Fig 4.23 shows a comparison of two devices that was light soaked and voltage soaked, and 

the same device had better fill factor, 𝑉𝑂𝐶 and efficiency, when voltage soaked. This study was 

done to further support the deflection of ions by applying bias, but in all future studies we 
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continued to measure devices under light exposure in Open circuit condition, as it is a more 

realistic condition. 

 

Fig 4.23: Voltage soaking 

From the results (Fig 4.23), device NP1765-B1 under light soaking in open circuit condition had 

an efficiency of 8.97% with a fill factor of 0.51 and 𝑉𝑂𝐶 of 0.92V, while under voltage soaking its 

efficiency increased to 10.4% with a fill factor of 0.59 and 𝑉𝑂𝐶 of 0.93V. Similarly, NP1767-B3 

had an efficiency of 9.87% with a fill factor of 0.58 and 𝑉𝑂𝐶 of 0.91V under light exposure in open 

circuit condition and its efficiency increased to 10.9% with a fill factor of 0.64 and 𝑉𝑂𝐶 of 0.93V.  

The parameter that improved in both cases was the fill factor and 𝑉𝑂𝐶 , we associate this to the 

constant and stronger field of the applied bias that helps in ions migrating back to the bulk and re-
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bonding with the broken bonds, thus reducing recombination and 𝐼𝑂. Thereby improving fill factor 

and 𝑉𝑂𝐶. 

4.1.4.4. Critical thickness 

In the earlier QE’s (Fig 4.16), we saw that the QE is approximately in the 0.9 range across the 

whole spectrum. As mentioned in the fabrication section, the optimal thickness is in the ~350nm 

range. In our previous work, we published that perovskite is a field controlled device [171], so if 

thickness is greater than the range of the field, carrier collection would decrease. To show this, we 

made a ~500nm perovskite device and measured the QE for the same with and without a bias. Fig 

4.24 shows the results of the experiment, one can see clearly that by applying a negative bias the 

carrier collection across the whole spectrum improved emphasizing that perovskite if field 

controlled, hence thickness of device needs to be carefully monitored. If perovskite is made too 

thin, we don’t have enough photon absorption whereas if made too thick we have collection issues.   

 

Fig 4.24: QE with Bias  
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4.2. PIN Sequential Devices 

Voltage evolution and hysteresis arises from a combination of charge trapping from un-doped 

transport layers, stoichiometry (excess MAI) and grain size. The electron transport layer in NIP 

devices namely 𝑇𝑖𝑂2 is un-doped and causes charge trapping. Almost all inorganic transport layers 

that align with the band edges of perovskite are doped using metal dopants, for example 𝑇𝑖𝑂2 is 

doped with Yttrium, ZnO is doped with Al, NiO is doped with Cu etc. and they are all attacked by 

MAI during the diffusion process. So, an alternate is to use doped organic layers as electron and 

hole transport layers. 

PEDOT and PCBM are doped organic layers that align well with the band edges of Perovskite. 

PEDOT has its valence band edge at ~5.2eV and conduction band edge at ~2.0eV, while PCBM 

has its conduction band edge at ~4.0eV and valence band edge at ~6.4eV. Hence, aligning as good 

Type-II heterojunction for hole and electron extraction respectively. FTO was used as a bottom 

contact and not ITO, as ITO will attacked be MAI as shown earlier in Chapter 3. The band structure 

of the PIN sequential architecture is shown in Figure 4.25. 

 

Fig 4.25: PIN sequential architecture PEDOT  
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Even though the bands align, from experiments we realized that adding an interfacial layer of 

P3HT improved carrier collection. So, the modified architecture is shown in Figure 4.26. 

 

Fig 4.26: PIN sequential architecture Pedot/P3HT 

The comparisons of PEDOT vs PEDOT/P3HT is shown in Figure 4.27. PEDOT/P3HT devices 

has higher current and voltage in comparison to PEDOT only devices.  

 

Fig 4.27: PEDOT vs PEDOT/P3HT 
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Another issue using organic transport layers is that they cannot withstand high temperature of 

180𝑂𝐶 for 3 hours (diffusion time of Perovskite formation). So, we had to lower the temperature 

to 1500 C and used slower temperature ramp up for grain enhancement. Fig 4.28 shows the results 

of grain enhancement study. The temperature of graphite was ramped from 1000𝐶 to 1500𝐶 in 

steps of 100𝐶. The best results were obtained for 100𝐶/1Hr condition with grain size ranging from 

~ 300nm-600nm. The grains are smaller than NIP grains and we associate this to lower growth 

temperature and changed substrate surface. 

 

Fig 4.28: Grain enhancement PIN 

  

The film thickness was ~350nm, and it took 6hrs to form the film at 1500𝐶. The film wasn’t kept 

for longer duration to minimalize the degradation of the organic transport layers. The results of 

100𝐶/0.5Hr & 100𝐶/1Hr is shown in Figure 4.29.  

 

Fig 4.29: IV results- Sequential PIN 
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From the IV results, we can see that 100𝐶/60𝑚𝑖𝑛𝑠 has higher current in comparison to 

100𝐶/30𝑚𝑖𝑛𝑠 and we associate it to the larger grain size for 100𝐶/60𝑚𝑖𝑛𝑠 ramping condition 

[Fig 4.28]. The QE comparison for the same study is shown in Fig 4.30.  

 

Figure 4.30: QE results- Sequential PIN 

The QE results agree with the SEM results. The QE current for the 100𝐶/60𝑚𝑖𝑛𝑠 ramping is 

~1.7𝑚𝐴/𝑐𝑚2 greater than the 100𝐶/30𝑚𝑖𝑛𝑠 condition and we associate this to the larger grains. 

Yet, high current as seen in NIP devices (22𝑚𝐴/𝑐𝑚2) cannot be attained in sequential PIN owing 

to the constraint in diffusion temperature of organic transport layers that cannot be processed at 

high temperature. This is the main limitation of making sequential devices on organic transport 

layers.  

Nevertheless, these devices have no hysteresis and negligible voltage evolution, as its transport 

layers are doped and the bulk had reduced MAI content owing to the reduced growth temperature. 

Also, the grains are of respectable size in 0.5um range. The IV hysteresis results are shown in 

Figure 4.31. From the results, we do see a small change in the fill factor and this could be due to 

non-stoichiometry in the surface (erfc function) that generates additional ions which accumulate 

at the interface at zero bias or when slight negative bias is applied before the forward scan. 
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Fig 4.31: IV Hysteresis-PIN sequential device. 

The above study shows that when doped transport layer are used, there is no hysteresis and 

insignificant voltage evolution. Since, the transport layers are doped, there is no charge trapping 

at the end of reverse scan and beginning of forward scan (as explained for Fig 4.22), thus we see 

no hysteresis. However, organic transport layer which is used in the above architecture is not 

suitable for high temperature processing, thereby bringing the need for co-evaporation, a room 

temperature process.  

4.3. PIN Co-Evaporated Devices 

Though sequential vapor processing produced respectable high efficiency devices, the technique 

has its limitations. The process is not suitable for organic transport layers due to processing 

limitations, ITO substrates or metal doped transport layers as it is attacked by MAI, and 

stoichiometry is intrinsically nonuniform across thickness owing to erfc function MAI distribution. 

Thus, a better approach to fabricating vapor devices is co-evaporation as it has no restriction on 



www.manaraa.com

118 

 

the materials used as transport layers and contacts, it enables stoichiometric control and it is a room 

temperature process. 

As we made co-evaporated devices numerous challenges were overcome, the co-evaporator was 

constantly modified to meet the processing requirements and to establish control, chapter 3 goes 

over this in detail. We are still working on our system, in the future we plan to use ceramic based 

capacitance monometers to monitor the chamber pressure, as they will not be affected by MAI. 

Also, we modified the PIN architecture. 

 

4.3.1. FTO/PEDOT/PTAA/Perovskite/PCBM/Aluminum 

A small modification to our earlier Sequential PIN architecture was made before we proceeded 

with co-evaporated devices, we replaced P3HT with PTAA (Poly (triaryl amine)). PTAA has a 

larger bandgap (~3.2 eV) than P3HT (~2.2 eV), thereby enabling more transmission of light across 

the spectrum. PTAA is amorphous doped p-type semiconductor polymer and is commonly used 

as hole transport material in OLED’s [228]. Figure 4.32 shows the transmission of PTAA. At 2.0 

mg/ml (solvent is Toluene), the transmission is nearly 100% across the spectrum as can be seen in 

the Figure 4.32. 
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Fig 4.32: PTAA Transmission 

The band structure of PIN architecture is shown in Figure 4.33, the PTAA-Perovskite valence band 

edges align better than P3HT-Perovskite band edge, thus enabling lesser band offset and higher 

𝑉𝑂𝐶. Also, the literature review on PTAA demonstrates that group using PTAA as hole transport 

layer have attained 𝑉𝑂𝐶 in the 1.0V-1.1V [43, 168, 229-231] range indicating that its valence band 

edge is approximately in the 5.3eV-5.4ev range.  

 

Fig 4.33: PIN architecture-FTO/PEDOT/PTAA 
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From the Hysteresis and voltage evolution studies, we know that MAI at the interface can create 

double diode (S shaped curve), voltage evolution and hysteresis. As explained elaborately in 

Chapter 3, MAI has high vapor pressure and will deposit on any cold surface including the 

substrate. To ensure that no excess MAI is on the substrate, ~10nm of PbI2 is deposited on the 

substrate before ramping up MAI crucible. That way while establishing 𝑃𝑏𝐼2 rate and MAI 

chamber pressure for the run, excess MAI is not deposited in the substrate but on 𝑃𝑏𝐼2 film which 

will convert to perovskite. We found that for ~10nm 𝑃𝑏𝐼2, the stabilization of 𝑃𝑏𝐼2 and MAI has 

to be carried forth in ~60mins-70mins for best results.  

The 𝑃𝑏𝐼2 − 𝑀𝐴𝐼 stoichiometry optimization study was carried out by keeping the 𝑃𝑏𝐼2 rate 

(crucible temperature) constant at 315𝑂𝐶[ ~0.6 Å/𝑠] and varying the MAI pressure. Also, the 

PTAA concentration and spin coating conditions was 2mg/ml PTAA in Toluene, spin coated at 

6000rpm/40sec and post annealed at 150℃/10mins in glovebox. The results of the experiment are 

shown below in Fig 4.34-4.36.  

 

Fig 4.34: MAI pressure optimization Study 1 
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From the IV and QE results, we can see that increasing the MAI pressure increases the current. 

Therefore, we continued to increase the pressure and the results are shown in Fig 4.35. From 

the results of IV and QE, the current increased on increasing the MAI pressure, however 

increasing MAI pressure to the 10−4 𝑇𝑜𝑟𝑟 range, offset the stoichiometry. Hence, we did 

further fine tuning in the 9.5×10−5 𝑇𝑜𝑟𝑟 range. 

 

Fig 4.35: MAI pressure optimization Study 2 

Since PTAA is an amorphous polymer, its thickness is decreased for reducing the series 

resistance. The ideal concentration was found to be 0.75mg/ml for the same spin coating 

conditions. Also, we further fine-tuned the MAI pressure to 9.0×10−5 𝑇𝑜𝑟𝑟, doing so 

improved the fill factor, voltage and current. The results of the best cell on FTO/PEDOT/PTAA 

is shown in Fig 4.36. The device had an efficiency of 15%, 𝑉𝑂𝐶 = 1.01𝑉, Current=19.1 𝑚𝐴/

𝑐𝑚2 and Fill factor=0.78. The current as seen from QE needs more improvement, nevertheless 

our fill factor was excellent better than any other group in literature.  
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Fig 4.36: Best Device- FTO/PEDOT/PTAA 

Figure 4.37 shows the hysteresis and voltage evolution for the FTO/Pedot/PTAA device, both the 

transport layers i.e. PTAA and PCBM are doped, so there is no charge trapping, hence no hysteresis 

is observed. However, there is a minor voltage evolution i.e. its takes the device 2 minutes to 

stabilize to the final voltage. The reasons for voltage evolution will be explained later (section 

4.3.4). 

 

Fig 4.37: IV Hysteresis & Voltage evolution-FTO/PEDOT/PTAA  

4.3.2. ITO/PTAA/Perovskite/PCBM/Aluminum 

Driving away moisture from the surface of the PTAA films before co-evaporation is important as 

moisture at the interface could lead to recombination center or surface states. Even though 

FTO/PEDOT/PTAA produced good devices, we decided to modify the architecture because 
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PEDOT is strongly hygroscopic [232] polymer. Under normal circumstance, it is spin coated 

outside the glovebox and then transferred into the glovebox, following which it is annealed at 

150℃ /10mins i.e. to drive away the moisture before spin coating the active layers.  

But our co-evaporator is not in the glovebox, so the film is briefly exposed to atmosphere before 

loading it in the co-evaporator, hence there is a high probability of moisture retention in PEDOT 

films considering its hygroscopic nature. Also, PTAA is doped polymer and can make good ohmic 

contact on FTO and ITO. As PEDOT isn’t required in our architecture, we removed it. Also, FTO 

was replaced by ITO, as it’s a better band match for PTAA. The band structure of the new 

architecture is shown in Figure 4.38.   

  

Fig 4.38: PIN architecture-ITO/PTAA 

In the earlier FTO/PEDOT/PTAA devices, substrate temperature was kept at room temperature. 

But, for the ITO/PTAA based devices, the substrate temperature was increased for two reasons, 

namely to increase grain size and drive away moisture. However, it is important to recognize that 

MAI has high vapor pressure, so the substrate temperature cannot be increased beyond a point else 

the compound wont form.  
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The disadvantage is that high temperature is important for grain growth. From experiments, we 

found that if substrate temperature is increased beyond 100℃, MAI reevaporates and does not 

form perovskite, so the maximum substrate temperature was set to 75𝑂𝐶. Fig 4.39 shows grain 

size of perovskite crystals grown by co-evaporation at room temperature, 50℃ and 75℃. 

 

Fig 4.39: Grain size- ITO/PTAA 

Though, not a large difference, we can still see that the grain size distribution increases with 

increasing temperature i.e. 75℃ grown films appears to have larger grain size distribution in 

comparison to the room temperature grown films. Fig 4.40 shows the results of the room 

temperature vs 50℃ grown films. 
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Fig 4.40: IV & QE-Room Temperature vs 50℃ [ITO/PTAA] 

For the 50℃ substrate temperature grown perovskite, the growth rate had to be slowed down for 

perovskite formation owing to the high vapor pressure of MAI. The MAI pressure was kept 

constant at 9×10−5 𝑇𝑜𝑟𝑟, however the 𝑃𝑏𝐼2 crucible temperature was decreased to 295℃ that 

corresponds to a growth rate of 0.26 Å/𝑠. From the IV and QE results [Figure 4.40], we can see 

that 50℃ had better carrier collection and higher current, we attribute the better current to mainly 

larger grains and no moisture at the interface.  

Also, like in the earlier architecture there is no hysteresis for both room temperature and 50℃ 

grown perovskite films as can be seen in the IV curves [Figure 4.40], thus emphasizing the 

importance of doped transport layers. Figure 4.41 shows the results for 75℃ substrate temperature 

grown perovskite.  
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Fig 4.41: IV- 75℃ [ITO/PTAA] 

For the 75℃ substrate temperature grown perovskites, no perovskite film formed when the MAI 

pressure was kept in the 9×10−5 𝑇𝑜𝑟𝑟 range. Therefore, the pressure was increased to 1.0 −

2.0×10−4 𝑇𝑜𝑟𝑟 range, keeping the 𝑃𝑏𝐼2 growth rate constant at 0.26Å/𝑠. However, this condition 

was difficult to control owing to MAI’s high vapor pressure, the pressure often surpassed above 

the 2×10−4 𝑇𝑜𝑟𝑟 range and stabilizing the chamber pressure post overshoot is problematic.  

To simply things, we increased the growth rate back to 0.6Å/𝑠 keeping the pressure in the (2 −

4)×10−4 𝑇𝑜𝑟𝑟 range. But, again keeping the substrate at 75℃ and increasing the MAI pressure 

introduced another problem, MAI started attacking the ITO. The results of the 75℃ run (Fig 4.41) 

shown above is a shortened run, with perovskite thickness of ~200nm, as can be seen from the QE. 

Longer runs gave us bad devices as ITO was attacked by MAI. 

 The IV shows no hysteresis, however the current is less. Though ITO is a better architecture, FTO 

is more suitable for the substrate temperature study as it will not be attacked by MAI. Figure 4.42 

shows the results of voltage evolution study for ITO/PTA based devices. As can be clearly seen, 

ITO/PTAA has voltage evolution with the voltage stabilizing in 6mins. The explanation for this 

will be given in section 4.3.4. 
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Fig 4.42: Room Temperature vs 50℃ -Voltage evolution 

 

4.3.3. FTO/PTAA/Perovskite/PCBM/Aluminum 

As ITO substrates, cannot withstand MAI at elevated temperature, we revert to FTO based 

substrate. FTO unlike ITO does not get attacked by MAI, thereby allowing for processing 

flexibility at higher pressure and temperature. Also, since PTAA is a doped organic transport layer, 

it makes good ohmic contact with FTO, so there is no problem on replacing ITO with FTO.  Figure 

4.43 shows the band structure of the FTO/PTAA device architecture.  
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Fig 4.43: PIN architecture-FTO/PTAA 

A similar study to the one concluded on ITO/PTAA (Fig 4.39) devices is carried out on 

FTO/PTAA based devices. Figure 4.44 shows the grain size comparison of perovskite grown on 

FTO/PTAA at different temperatures (room temperature vs 50℃ vs 75℃). As one can see from 

the images [Figure 4.44], the grain size grows slightly as the substrate temperature is increased 

from room temperature to 75℃.  The processing conditions for the different temperature 

conditions are same as carried out earlier on ITO/PTAA devices. 

 

Fig 4.44: Grain size- FTO/PTAA 

The IV and QE results of the room temperature vs 50℃ vs 75℃ are shown in Figure 4.45-4.47 

respectively. The results are similar, with 𝐼𝑆𝐶   ~2.3𝑚𝐴 [𝐽𝑆𝐶~21.7𝑚𝐴/𝑐𝑚2], 𝑉𝑂𝐶   ~1𝑉, Fill 

Factor~0.75 % and Efficiency ~16%. For degradation studies [Istiaque Hossian’s PhD work], we 
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expect 75℃ to show better results owing to the larger grain size and lack of moisture. The QE of 

the FTO/PTAA devices is 0.9 across the spectrum [ Figure 4.45-4.47] clearly showing good carrier 

collection. Also, the devices have no hysteresis emphasizing the importance of doped transport 

layers. 

 

Fig 4.45: IV Room Temperature -FTO/PTAA 

 

Fig 4.46: IV 50℃ -FTO/PTAA 

 

Fig 4.47: IV 75℃ -FTO/PTAA 
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Nonetheless FTO/PTAA devices also has voltage evolution. It takes 2 minutes for the device to 

stabilize buts its voltage evolution is faster than that observed in ITO/PTAA devices. We will 

compare the voltage evolution of the ITO vs FTO based devices in the next section. 

 

Fig 4.48: Voltage evolution-FTO/PTAA devices 

 

4.3.4. Voltage evolution: ITO/PTAA vs FTO/PTAA 

The voltage evolution on co-evaporated devices can be explained from the grain size of the films. 

We have already seen the importance MAI amount (stoichiometry) and doped transport layers, 

this section will emphasize the importance of grain size on device anomalies. Figure 4.49 shows 

the grain size of perovskite grown on ITO/PTAA vs FTO/PTAA devices. The grain size of 

perovskites grown on FTO/PTAA is naturally larger, perhaps owing to difference in surface energy 

of FTO/PTAA vs ITO/PTAA surface. As we know, large grains have several advantages such as 

higher current, lesser recombination, better fill factor and high voltage. In addition, we will see 

that larger grains also minimizes voltage evolution. 



www.manaraa.com

131 

 

 

Fig 4.49: Grain size: ITO/PTAA vs FTO/PTAA 

Figure 4.50 shows the voltage evolution comparison for the ITO/PTAA vs FTO/PTAA devices, 

the ITO/PTAA devices takes ~6mins to stabilize while the FTO/PTAA devices takes 2 mins to 

stabilize.  

 

Fig 4.50: Voltage evolution: ITO/PTAA vs FTO/PTAA 

We know that smaller the grain size, larger the grain boundaries surface. Also, these grain 

boundaries have broken bonds, that can generate ions, thus increasing the ion density. Therefore, 

grain boundaries offer pathways and is a source of ions. Consequently, ITO/PTAA owing to its 
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smaller grain films has more ion accumulation at the interface and a slower voltage evolution in 

comparison to FTO/PTAA that has larger grain. However, there is no hysteresis in both 

ITO/PTAA/Perovskite/PCBM/AL and FTO/PTAA/Perovskite/PCBM/AL architecture as the 

transport layers namely PTAA and PCBM are doped, thereby having no charge trapping of 

carriers/ions at the interface during the revere and instant forward scan. 

 

Fig 4.51: Voltage evolution: FTO/PTAA vs FTO/PEDOT/P3HT 

Figure 4.51 compares the Grain size & Voltage evolution of the Co-Evaporated FTO/PTAA and 

sequentially evaporated FTO/PEDOT/P3HT device. The sequentially evaporated device owing to 

150℃/6ℎ𝑟 MAI diffusion has large grains in comparison to the FTO/PTAA device. Therefore, 

there is no voltage evolution because large grain have less pathways for ionic migration, also 

diminished grain boundaries generate lesser ions. The 6-hour duration was the exact time required 
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for complete perovskite formation, so we assume excess MAI in the bulk is significantly reduced. 

Even though sequentially grown devices have no voltage evolution and hysteresis, its performance 

is sub-par in comparison to the co-evaporated devices.  

The lone disadvantage of co-evaporated device is the voltage evolution and it is minimalized to an 

extent using FTO/PTAA architecture. Techniques like solvent annealing, a proven technique for 

grain enhancement could be utilized, however the whole purpose of vapor devices is to make the 

active layer solvent free, so solvent annealing defeats the purpose especially in vapor devices. So, 

in the future, novel grain enhancement approaches need to be devised for grain enhancement. 

4.3.5. Record efficiency PIN cell. 

 

Fig 4.52: Record efficiency-PIN cell 

The champion PIN cell made by us has an efficiency of 17.3% with current density of 

21.96 𝑚𝐴/𝑐𝑚2, 𝑉𝑂𝐶 = 1.03𝑉 & F. F=0.76, the device was grown on FTO/PTAA at room 

temperature. 17.3% is the highest ever recorded efficiency till date for Co-evaporated PIN devices 

surpassing the PIN cell made by Meredith et al[55]. Figure 4.53 shows a histogram of co-

evaporated PIN devices. The average Efficiency~15.4%, average 𝑉𝑂𝐶~0.99V, average Fill 

factor~0.76 and average 𝐽𝑠𝑐~20.6 𝑚𝐴/𝑐𝑚2. 
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Fig 4.53: Histogram Co-evaporated PIN cell. 

 

4.4. NIP Co-Evaporated Devices 

Lastly, we made co-evaporated NIP devices on 𝐹𝑇𝑂/𝑇𝑖𝑂2, the device architecture is shown in 

Figure 4.54. We tweaked our co-evaporation fabrication and added an additional step. Post co-

evaporation, we annealed the as-deposited film in the glove-box in the presence of MAI (20mg) at 

180℃/60𝑚𝑖𝑛𝑠 (no ramping) for post-deposition grain enhancement. Grain enhancement as seen 

earlier in ITO/PTAA vs FTO/PTAA devices, helps reduce voltage evolution. In PIN architecture, 

post deposition grain enhancement wasn’t an option due to temperature limitation of organic 

layers. 
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𝑇𝑖𝑂2 is an un-doped transport layer, so it is impossible to eliminate voltage evolution and 

hysteresis owing to charge trapping. Even though hysteresis and voltage evolution cannot be 

completely evaded, it can be minimized to an extent by decreasing the excess ion density 

(stoichiometry control & large grains) and ionic pathways (grain boundaries). So, we decided to 

post anneal in the presence of MAI at high temperature to grow the grains, if annealing is done 

without MAI, perovskite will disintegrate to 𝑃𝑏𝐼2 as will be seen in chapter 5. 

 

Fig 4.54: Co-evaporated NIP architecture 

Fig 4.55 shows the grain size comparison of Co-evaporated PIN on FTO/PTAA vs Grain enhanced 

Co-evaporated NIP (grain enhanced) vs Sequential NIP.  

 

Fig 4.55: Co-Evap [PIN vs NIP] vs Sequential NIP 
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The grain size of co-evaporated NIP is significantly larger than co-evaporated PIN owing to grain 

enhancement. Similar grain enhancement technique for coevaporated-PIN devices is not possible 

as organic layers cannot withstand high temperature of 180℃ . Yet, the grain size of sequential 

device will be larger, as the fabrication procedure involves slow ramp up (10℃ /10𝑚𝑖𝑛𝑠) and 

180℃/2𝐻𝑟𝑠 diffusion that helps in producing large grain. 

But the drawback of sequential devices is that these films have excess ion density at the interface 

of perovskite/P3HT owing to the erfc function. For architectures with un-doped transport layers, 

large grain is critical as it minimizes ion density at the interface. Figure 4.56 shows the results of 

grain enhanced co-evaporated NIP device. 

 

Fig 4.56: Co-Evaporated NIP results 

The devices efficiency is comparable to our best sequential device (13.7%). The device has 

Efficiency~14%, 𝑉𝑂𝐶=0.96V, 𝐽𝑠𝑐 = 20.9𝑚𝐴/𝑐𝑚2 and Fill factor= 0.70. The QE current agrees, 

also from QE we know that the current can be improved with thickness optimization. 

4.4.1. Sequential NIP vs co-evaporated NIP 

Even though the sequential NIP devices have large grains, its ion accumulation at interface will be 

larger owing to stoichiometry variations across the bulk (erfc function). Co-evaporated device 
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offers stoichiometry control, and with grain enhancement we expect better voltage evolution. The 

hysteresis comparison of Co-evaporated NIP vs Sequential NIP is shown in Figure 4.57.  

 

Fig 4.57: NIP IV Hysteresis: Sequential vs Co-Evaporated  

From the hysteresis comparison (Fig 4.57), the co-evaporated devices have less hysteresis and we 

associate this to better stoichiometry control in the film which leads to reduced ion density at the 

interface. However, unlike PIN device that has doped transport layers, the NIP device has an un-

doped transport layer (𝑇𝑖𝑂2) that traps charges, hence hysteresis isn’t eliminated.  

As explained before, when the IV is scanned in the reverse direction (high bias to low bias), the 

inbuilt field gradually increases resulting in migration of ions back to the interface and some of 

the charges are trapped at the interface, reducing the electric field and 𝑉𝑂𝐶. Also, a negative bias 

is applied before the forward scan (low bias to high bias), resulting in ions being attracted back to 

the interface. Consequently, the forward scan has a lesser 𝑉𝑂𝐶 and Fill factor.  However, the 

hysteresis response has improved using co-evaporation. Next, Figure 4.58 shows the voltage 

evolution comparison of Sequential vs Co-evaporated device. 
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Fig 4.58: NIP Voltage evolution: Sequential vs Co-Evaporated  

From the voltage evolution comparison (Fig 4.58), we can clearly see that co-evaporated NIP 

devices have a faster voltage evolution or stabilization in comparison to the sequential NIP devices. 

The co-evaporated device’s voltage onsets at ~0.94V [0mins] and stabilizes at 0.96V [5mins], 

while the sequential device’s 𝑉𝑂𝐶 onsets at 0.87V [0mins] and stabilizes at 0.94V [10mins]. The 

higher starting 𝑉𝑂𝐶 of co-evaporated devices indicates that it has lesser ion accumulation at the 

interface owing to the techniques stoichiometry control.  

In the contrary, sequential device has a significantly lower onset voltage of 0.87V implying that it 

has greater ion accumulation which reduces its in-built field, thus decreasing the 𝑉𝑂𝐶 and fill factor. 

Also, comparing the voltage evolution FTO/PTA-PIN co-evaporated device [Fig 4.48] with Co-

evaporated NIP device [Fig 4.58], the voltage of the co-evaporated NIP device takes 5mins to 

stabilize in comparison to PIN device that takes 2mins, even though NIP device has larger grains 

[Figure 4.55]. We associate this anomaly to charge trapping that occurs in 𝑇𝑖𝑂2 and not in PTAA, 

as it is doped, thereby resulting in faster voltage stabilization. This result again re-emphasizes the 

importance of doped transport layers. 
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CHAPTER 5 

 FAI PEROVSKITES & TRANSPORT LAYERS 

 

Perovskites materials have a general formula of 𝐴𝐵𝑋3 and wide variety of elemental combinations 

can be used to be form the perovskite structure. In general, A is Methyl Ammonium (𝐶𝐻3𝑁𝐻3
+) 

[MA] or Formamidinium (𝐻𝐶(𝑁𝐻2)2
+

) [FA] or Cesium, while B is metal like Lead (Pb) or Tin 

(Sn) and X is a halide like Chlorine (Cl) or Bromine (Br) or Iodine (I). If we consider the three A 

cations, Cs has a smaller effective ionic radius than MA, while FA has a larger organic cation than 

MA [233]. Replacing MA with smaller cation Cs will increase the bandgap to ~1.73eV, while 

substituting with the larger cation will decrease the bandgap to ~1.47 eV[22].  

Hence, FA based perovskites has a greater absorption spectrum and its bandgap is closer to 

maximum theoretical efficiencies derived for a single junction from the Shockley−Queisser limit 

[51]. FA Lead iodide based perovskite’s have reported diffusion length of 6.6𝜇𝑚, whereas FA 

lead bromide have longer diffusion lengths in the range of 19um [234]. Also, 𝐹𝐴𝑃𝑏𝐼3 single crystal 

have shown long carrier lifetime of 484 ns, high carrier mobility of 4.4 𝑐𝑚2𝑉−1𝑠−1 and a 

conductivity of 1.1×10−7(Ω𝑐𝑚)−1 [235]. The reported properties of this material in literature 

illustrates that it is favorable for photovoltaic applications.  

 

5.1. Degradation Studies 

Solar cells need to be able to handle high temperature especially if they are going to be mounted 

in developing nations in Africa or in the Indian subcontinent. It’s not uncommon for the desert 

temperature in Saudi Arabia to reach 54℃ on a summer day. Photovoltaic (PV) modules typically 
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come with 20 year warranties that guarantee that the panels will produce at least 80% of the rated 

power after 20 years of use. The general rule of thumb is that panels will degrade by about 1% 

each year. So, thermal-stability and photo-stability of PV materials are critical. In this chapter, we 

are going to study the thermal stability of the organic cation based Perovskites. Figure 5.1 

compares the XRD spectra of the two organo-cation i.e. MAI and FAI sequentially grown 

perovskites.  

 

Fig 5.1: XRD: FAI vs MAI 

As can be observed from Figure 5.1, the peaks of the FAI based perovskite shifts to the left of MAI 

perovskite, this is because FAI is larger cation and as per Bragg’s law [𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃], 𝑑 is 

inversely proportional to 𝜃, so as 𝑑 increase for larger cation, the 𝜃 for the peaks will shift to the 

left. Next, we took these pristine films and annealed them in a glove box (filled with 𝑁2) for 24hrs 

in calibrated hotplate at 100℃ to study the thermal stability of the perovskite material. Figure 5.2 

shows the XRD spectra for the 24-hour annealed MAI based perovskites.  
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Fig 5.2: XRD: MAI Perovskite degradation [100℃] 

The peak at 2𝜃 value of 14.10 corresponds to Perovskite, and by post annealing at 100℃ for 24 

hours, a peak arises at 2𝜃 value of 12.70 that corresponds to the precursor 𝑃𝑏𝐼2, thus signifying 

that perovskite has degraded. Similar experiment was conducted for FAI perovskite and XRD 

spectra of the same is shown in Figure 5.3.  

 

Fig 5.3: XRD: FAI Perovskite degradation [100℃] 
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Unlike, the MAI perovskite the FAI perovskite post annealing for 24 hours at 100℃ did not 

degrade as observed from the XRD spectra in Figure 5.3. Thus, showing that FAI perovskite in 

addition to absorbing wider spectrum of photon is also thermally more stable. We continued to 

study the stability of FAI perovskite by annealing the pristine film at 125℃ for 24 hours in a 𝑁2 

filled glove box. The results of the study are shown in Figure 5.4.  

 

Fig 5.4: XRD: FAI Perovskite degradation [125℃] 

On annealing at 125℃ for 24 hours, the 𝑃𝑏𝐼2 peak at 2𝜃 value of 12.70 appears showing that FAI 

perovskite also degrades like MAI perovskite but at temperature of 125℃.  Therefore, using FAI 

as substitute to MAI perovskite, produces a thermally more stable alternative. We decided to repeat 

the 125℃/24 Hour experiment but by sealing the film using Poly (methyl methacrylate) (PMMA), 

a clear colorless polymer i.e. resistant to chemicals and weather [236]. The results of the study are 

shown in Figure 5.5. The results show that sealing the film, the FAI perovskite does not degrade 

(the 𝑃𝑏𝐼2 peak at 2𝜃 value of 12.70 did not appear).  
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Fig 5.5: XRD: FAI Perovskite capped degradation [125℃] 

The stability of the FAI perovskite in comparison to MAI perovskite can be associated to ion 

migration. F. H. Alharbi et al [237] showed that by replacing Methyl Amine organic cation with 

other organic cation’s, the structural stability improves owing to the electron coupling between the 

organic cation and 𝑃𝑏𝐼6 octahedral. Also, Kai Zhu et al [238] showed that at high temperature, the 

composition of material varied at grain boundaries indicating migration of mobile of ions at grain 

boundaries that start’s degradation. Finally, the work by Venkataraman el al [239] shows that the 

predominant mechanism of device degradation was thermally activated fast ion. They calculated 

the diffusion coefficient and activation energy for MA and FA at 45℃, the values are given below. 

Organic Cation Diffusion coefficient (𝑐𝑚2𝑠−1) Activation energy (eV) 

Methyl Ammonium ~3.6×10−12 0.227 

Formamidinium ~3.0×10−13 0.787 
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As methyl ammonium has a higher diffusion coefficient and lower activation energy, the ions are 

more mobile in Methyl amine based perovskite inducing faster degradation, hence MAI perovskite 

degrades faster in comparison to FAI perovskite. 

5.2. FAI Sequential Vapor Devices 

In addition, we also fabricated Sequential FAI devices using the NIP architecture, the band 

structure, IV and QE results of the FAI devices is shown in Figure 5.6 & 5.7. The fabrication steps 

of the sequential FAI devices are mentioned in detail in Chapter 3. 

 

Fig 5.6: FAI device NIP architecture  

 

Fig 5.7: FAI device IV & QE 
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The best FAI device had an efficiency~11.8%, 𝑉𝑂𝐶~0.93𝑉, Fill factor~0.58 & Efficiency~11.8%. 

From the QE results, we recognize that higher current can easily be achieved by optimization of 

the device thickness. Figure 5.8 shows a histogram of the FAI device parameters.  

 

Fig 5.8: FAI device Histogram 

Till date, we are the only group to make FAI devices using the sequential vapor approach. The 

device parameters of the FAI devices are as follows: mean 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦~10.2%, mean 𝑉𝑂𝐶 =

0.93𝑉, mean 𝐹𝑖𝑙𝑙 𝑓𝑎𝑐𝑡𝑜𝑟~0.56 & mean 𝐶𝑢𝑟𝑟𝑒𝑛𝑡~21.6𝑚𝐴/𝑐𝑚2. As can be seen from the 

histogram, the devices were very consistent.  

Finally, a QE comparison of the MAI and FAI device is shown in Figure 5.9, the results clearly 

show that FAI perovskite has a smaller bandgap to MAI perovskite. FAI perovskite’s bandgap is 

~1.45eV whereas MAI perovskite bandgap is ~ 1.55eV. Therefore, FAI perovskite has a broader 

absorption spectrum in comparison to MAI perovskite. With grain enhancement techniques and 

slight thickness optimization higher current can be obtained for FAI devices. 
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Fig 5.9: QE: FAI vs MAI 

 

5.3. Transport Layer Development 

In addition to developing Perovskite solar cells, some of my work also involved development of 

transport layers namely Nickel oxide (𝑁𝑖𝑂𝑥) and Cadmium sulphide (CdS). Nickel oxide is one of 

few p-type oxides that has it valence band matching perfectly with Perovskite. It’s valence band 

edge is at ~5.4eV and conduction band edge is at ~ 2.2 eV making it a very good Type-II 

heterojunction for collecting holes and blocking electrons. Likewise, Cadmium sulphide has its 

conduction band edge at ~ 4.1eV and valence band edge at ~ 6.52eV making it a very good Type-

II heterojunction for extracting electrons and blocking holes.  

The cadmium sulphide film development was for futuristic needs i.e. to make multijunction or 

tandem solar cell. To make tandem solar cells using perovskite as large bandgap material and 

crystalline silicon as the low bandgap material, light must come from the top, thus entailing use of 

conductive oxide like sputtered Aluminum Doped Zinc oxide as top contact. However, perovskite 

and PCBM, both cannot endure plasma and will degrade. So, depositing a thin layer of CdS on top 
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of PCBM will protect both perovskite and PCBM from plasma. Also, since PCBM makes ohmic 

contact with Perovskite and doped ZnO, there is no collection issues. Both, 𝑁𝑖𝑂𝑥 and CdS recipes 

were developed using E-Beam evaporator, by depositing it at a rate of 1.0 A/s and post deposition 

𝑁𝑖𝑂𝑥 was annealed at 200/60mins. The transmission of 𝑁𝑖𝑂𝑥 and CdS is shown in Figure 5.10 & 

5.11 respectively.  

 

Fig 5.10: CdS Transmission 

 

Fig 5.11: 𝑁𝑖𝑂𝑥Transmission 
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The architecture of the PIN devices made using 𝑁𝑖𝑂𝑥 and CdS is shown in Figure 5.12. The 

perovskite film was solution processed and the recipe for the same was developed by Liang Zhang.  

 

 
 

Fig 5.12: 𝑁𝑖𝑂𝑥 and CdS based device– PIN architecture 

The results of the 𝑁𝑖𝑂𝑥 & CdS based device is shown in Figure 5.13. 

 

 
Fig 5.13: 𝑁𝑖𝑂𝑥 and CdS based device – IV & QE results 
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CHAPTER 6 

 CONCLUSION  

 

6.1. Conclusion  

To summarize this work, high efficiency sequential and co-evaporated vapor devices were made 

using both NIP and PIN architecture. Some of the significant findings from this work are follows. 

• High efficiency sequential NIP devices were made P3HT as p-type Type II heterojunction. 

The devices were consistent and thickness of P3HT was critical in attaining high 

efficiencies. Techniques such as vacuum annealing for removing excess MAI was 

introduced. 

• The sequential NIP devices has voltage evolution and hysteresis. Voltage evolution was 

improved by reducing the amount of MAI; however hysteresis could not be solved by 

reducing MAI owing to charge trapping in undoped transport layers. 

• PIN sequential devices made using doped organic transport layers did not have hysteresis 

and no voltage evolution. 

• Consistent high efficiency PIN devices were made using Co-evaporator. The co-evaporated 

devices were made on FTO and ITO superstrates at room temperature, 50℃ and 75℃. The 

substrate temperature was increased for grain enhancement, one of the highest efficiency 

PIN vapor device was fabricated. 

• FTO/PTAA devices have improved voltage evolution to ITO/PTAA devices and this is due 

to the intrinsically larger grains formed on FTO/PTAA surface. In comparison, the 
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sequential PIN devices have no voltage evolution owing to both large grains and doped 

transport layers (New discovery) 

• Co-evaporated NIP devices were made with a modified fabrication for grain enhancement. 

The devices had improved voltage evolution. Still, the co-evaporated NIP devices have 

hysteresis due to charge trapping in undoped 𝑇𝑖𝑂2 

• FAI perovskites were fabricated using NIP architecture, we were the first group to make 

FAI based devices using vapor approach.  

• Thermal degradation study was carried out on both MAI and FAI based perovskites, FAI 

perovskites was found to be thermally more stable.  

• Cadmium Sulfide and Nickel oxide film development was carried out using E-beam 

evaporator. CdS offers a pathway to use the device as the top cell in a tandem, protects 

the perovskite from plasma during ZnO sputtering and stops diffusion of moisture and 

mobile ions towars the contact.
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